A Generative Adversarial Network Approach to Predict Nanoparticle Size in Microfluidics.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sara Mihandoost, Sima Rezvantalab, Roger M Pallares, Volkmar Schulz, Fabian Kiessling
{"title":"A Generative Adversarial Network Approach to Predict Nanoparticle Size in Microfluidics.","authors":"Sara Mihandoost, Sima Rezvantalab, Roger M Pallares, Volkmar Schulz, Fabian Kiessling","doi":"10.1021/acsbiomaterials.4c01423","DOIUrl":null,"url":null,"abstract":"<p><p>To achieve precise control over the properties and performance of nanoparticles (NPs) in a microfluidic setting, a profound understanding of the influential parameters governing the NP size is crucial. This study specifically delves into poly(lactic-<i>co</i>-glycolic acid) (PLGA)-based NPs synthesized through microfluidics that have been extensively explored as drug delivery systems (DDS). A comprehensive database, containing more than 11 hundred data points, is curated through an extensive literature review, identifying potential effective features. Initially, we employed a tabular generative adversarial network (TGAN) to enhance data sets, increasing the reliability of the obtained results and elevating prediction accuracy. Subsequently, NP size prediction was performed using different machine learning (ML) techniques including decision tree (DT), random forest (RF), deep neural networks (DNN), linear regression (LR), support vector regression (SVR), and gradient boosting (GB). Among these ensembles, DT emerges as the most accurate algorithm, yielding an average prediction error of 8%. Further simulations underscore the pivotal role of the synthesis method, poly(vinyl alcohol) (PVA) concentration, and lactide-to-glycolide (LA/GA) ratio of PLGA copolymers as the primary determinants influencing NP size.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"268-279"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01423","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve precise control over the properties and performance of nanoparticles (NPs) in a microfluidic setting, a profound understanding of the influential parameters governing the NP size is crucial. This study specifically delves into poly(lactic-co-glycolic acid) (PLGA)-based NPs synthesized through microfluidics that have been extensively explored as drug delivery systems (DDS). A comprehensive database, containing more than 11 hundred data points, is curated through an extensive literature review, identifying potential effective features. Initially, we employed a tabular generative adversarial network (TGAN) to enhance data sets, increasing the reliability of the obtained results and elevating prediction accuracy. Subsequently, NP size prediction was performed using different machine learning (ML) techniques including decision tree (DT), random forest (RF), deep neural networks (DNN), linear regression (LR), support vector regression (SVR), and gradient boosting (GB). Among these ensembles, DT emerges as the most accurate algorithm, yielding an average prediction error of 8%. Further simulations underscore the pivotal role of the synthesis method, poly(vinyl alcohol) (PVA) concentration, and lactide-to-glycolide (LA/GA) ratio of PLGA copolymers as the primary determinants influencing NP size.

微流体中预测纳米颗粒尺寸的生成对抗网络方法。
为了在微流体环境中精确控制纳米颗粒(NPs)的性质和性能,深入了解控制NP尺寸的影响参数至关重要。本研究专门研究了通过微流体合成的聚乳酸-羟基乙酸(PLGA)基NPs,该NPs已被广泛探索作为药物传递系统(DDS)。一个全面的数据库,包含超过1100个数据点,通过广泛的文献综述,确定潜在的有效特征。最初,我们采用表格生成对抗网络(TGAN)来增强数据集,增加所获得结果的可靠性并提高预测精度。随后,使用不同的机器学习(ML)技术进行NP大小预测,包括决策树(DT)、随机森林(RF)、深度神经网络(DNN)、线性回归(LR)、支持向量回归(SVR)和梯度增强(GB)。在这些组合中,DT是最准确的算法,平均预测误差为8%。进一步的模拟强调了合成方法、聚乙烯醇(PVA)浓度和PLGA共聚物的丙交酯与乙醇酸(LA/GA)比是影响NP大小的主要决定因素的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信