Widespread outdoor exposure to uncompensable heat stress with warming

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Yuanchao Fan, Kaighin A. McColl
{"title":"Widespread outdoor exposure to uncompensable heat stress with warming","authors":"Yuanchao Fan, Kaighin A. McColl","doi":"10.1038/s43247-024-01930-6","DOIUrl":null,"url":null,"abstract":"Previous studies projected an increasing risk of uncompensable heat stress indoors in a warming climate. However, little is known about the timing and extent of this risk for those engaged in essential outdoor activities, such as water collection and farming. Here, we employ a physically-based human energy balance model, which considers radiative, wind, and key physiological effects, to project global risk of uncompensable heat stress outdoors using bias-corrected climate model outputs. Focusing on farmers (approximately 850 million people), our model shows that an ensemble median 2.8% (15%) would be subject to several days of uncompensable heat stress yearly at 2 (4) °C of warming relative to preindustrial. Focusing on people who must walk outside to access drinking water (approximately 700 million people), 3.4% (23%) would be impacted at 2 (4) °C of warming. Outdoor work would need to be completed at night or in the early morning during these events. Farmers and people collecting drinking water outside are projected to be at risk of not achieving sufficient heat dissipation to maintain a stable body temperature at 2 degrees Celsius of global warming, according to an analysis based on a physically based model and heat stress scenarios.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-13"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01930-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01930-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies projected an increasing risk of uncompensable heat stress indoors in a warming climate. However, little is known about the timing and extent of this risk for those engaged in essential outdoor activities, such as water collection and farming. Here, we employ a physically-based human energy balance model, which considers radiative, wind, and key physiological effects, to project global risk of uncompensable heat stress outdoors using bias-corrected climate model outputs. Focusing on farmers (approximately 850 million people), our model shows that an ensemble median 2.8% (15%) would be subject to several days of uncompensable heat stress yearly at 2 (4) °C of warming relative to preindustrial. Focusing on people who must walk outside to access drinking water (approximately 700 million people), 3.4% (23%) would be impacted at 2 (4) °C of warming. Outdoor work would need to be completed at night or in the early morning during these events. Farmers and people collecting drinking water outside are projected to be at risk of not achieving sufficient heat dissipation to maintain a stable body temperature at 2 degrees Celsius of global warming, according to an analysis based on a physically based model and heat stress scenarios.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信