Thaissa P. F. Rosalba, Guilherme J. P. Gonçalves, Carlos Eduardo M. Salvador, Alexandre Fonseca, Carlos Kleber Z. Andrade
{"title":"A modular flow process intensification towards lipid peptoids nano assembly formation","authors":"Thaissa P. F. Rosalba, Guilherme J. P. Gonçalves, Carlos Eduardo M. Salvador, Alexandre Fonseca, Carlos Kleber Z. Andrade","doi":"10.1007/s41981-024-00338-9","DOIUrl":null,"url":null,"abstract":"<div><p>Nanotechnology has emerged as a groundbreaking field with profound implications for drug delivery systems, offering precise targeting, controlled release, and enhanced therapeutic efficacy. Continuous flow process is a compelling approach in the production of nanoparticles, providing numerous advantages over traditional batch methods. By maintaining uniform conditions and precise control over reaction parameters, continuous flow systems enable enhanced reproducibility, scalability, and efficiency in nanoparticle synthesis. In this context, microfluidic hydrodynamic focusing (MHF) is a promising method for continuous flow lipid nanoparticle synthesis. Herein, we report a study for the development of a single-step continuous flow process to generate nanoparticles using a PLA chip device inspired by microfluidic techniques. A lipid peptoid synthesized via Ugi reaction was chosen from an ongoing study to evaluate the most appropriate conditions for the continuous flow process. It was possible to produce nanoparticles with small size and the optimized parameters generated nanoparticles with sizes ≤ 200 nm, making them good candidates for drug delivery system.</p><h3>Graphical abstracts</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 4","pages":"677 - 689"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-024-00338-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanotechnology has emerged as a groundbreaking field with profound implications for drug delivery systems, offering precise targeting, controlled release, and enhanced therapeutic efficacy. Continuous flow process is a compelling approach in the production of nanoparticles, providing numerous advantages over traditional batch methods. By maintaining uniform conditions and precise control over reaction parameters, continuous flow systems enable enhanced reproducibility, scalability, and efficiency in nanoparticle synthesis. In this context, microfluidic hydrodynamic focusing (MHF) is a promising method for continuous flow lipid nanoparticle synthesis. Herein, we report a study for the development of a single-step continuous flow process to generate nanoparticles using a PLA chip device inspired by microfluidic techniques. A lipid peptoid synthesized via Ugi reaction was chosen from an ongoing study to evaluate the most appropriate conditions for the continuous flow process. It was possible to produce nanoparticles with small size and the optimized parameters generated nanoparticles with sizes ≤ 200 nm, making them good candidates for drug delivery system.
期刊介绍:
The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.