A novel electromagnetic wave absorption geopolymer originated from iron tailings and blast furnace slag

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Xuwen Ning, Lang Yang, Feng Rao, Tianyu Wang, Shengping Wu, Hanhui Huang
{"title":"A novel electromagnetic wave absorption geopolymer originated from iron tailings and blast furnace slag","authors":"Xuwen Ning,&nbsp;Lang Yang,&nbsp;Feng Rao,&nbsp;Tianyu Wang,&nbsp;Shengping Wu,&nbsp;Hanhui Huang","doi":"10.1617/s11527-024-02547-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a novel electromagnetic wave absorption geopolymer was created with efficient utilization of two solid wastes iron tailings and blast furnace slag, meanwhile the mechanism and impacts of iron tailings content, water–solid ratio and specimen thickness on their electromagnetic wave absorption and mechanical property were systematically investigated. It was found the pores, micro-cracks and unreacted particles in the specimens are benefitial for electromagnetic wave absorption but against to compressive strength, even though the compressive strength reaches 69.7 MPa with the iron tailings content 50% and water–solid ratio 0.4. The addition of iron tailings significantly enhances the electromagnetic wave absorption properties of the geopolymers, and increasing iron tailings content improves the number of pores, micro-cracks and the permeability of geopolymers. The electromagnetic wave absorption properties of the geopolymer initially increase and then decrease with the increase of specimen thickness and water–solid ratio. With an iron tailings content 70%, water–solid ratio 0.4 and thickness 30 mm, the effective absorption bandwidth (&lt; -5 dB) was optimized to 10.44 GHz with a minimum reflection loss of −13.34 dB. A new mechanism for electromagnetic absorption in iron tailings has been proposed, in which the electromagnetic wave absorption of geopolymers is mainly dominated by magnetic loss and spatial propagation loss. This study provides higher competitiveness and comprehensive utilisation of iron tailings in the field of electromagnetic wave absorbing building materials, and has great potential for applications in military and other fields affected by high electromagnetic wave frequencies.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02547-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a novel electromagnetic wave absorption geopolymer was created with efficient utilization of two solid wastes iron tailings and blast furnace slag, meanwhile the mechanism and impacts of iron tailings content, water–solid ratio and specimen thickness on their electromagnetic wave absorption and mechanical property were systematically investigated. It was found the pores, micro-cracks and unreacted particles in the specimens are benefitial for electromagnetic wave absorption but against to compressive strength, even though the compressive strength reaches 69.7 MPa with the iron tailings content 50% and water–solid ratio 0.4. The addition of iron tailings significantly enhances the electromagnetic wave absorption properties of the geopolymers, and increasing iron tailings content improves the number of pores, micro-cracks and the permeability of geopolymers. The electromagnetic wave absorption properties of the geopolymer initially increase and then decrease with the increase of specimen thickness and water–solid ratio. With an iron tailings content 70%, water–solid ratio 0.4 and thickness 30 mm, the effective absorption bandwidth (< -5 dB) was optimized to 10.44 GHz with a minimum reflection loss of −13.34 dB. A new mechanism for electromagnetic absorption in iron tailings has been proposed, in which the electromagnetic wave absorption of geopolymers is mainly dominated by magnetic loss and spatial propagation loss. This study provides higher competitiveness and comprehensive utilisation of iron tailings in the field of electromagnetic wave absorbing building materials, and has great potential for applications in military and other fields affected by high electromagnetic wave frequencies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信