From Bench to Bedside: ROS-Responsive Nanocarriers in Cancer Therapy

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Abhishek Chauhan, Raj Kamal, Rohit Bhaita, Gurjeet Singh Thakur, Ankit Awasthi
{"title":"From Bench to Bedside: ROS-Responsive Nanocarriers in Cancer Therapy","authors":"Abhishek Chauhan,&nbsp;Raj Kamal,&nbsp;Rohit Bhaita,&nbsp;Gurjeet Singh Thakur,&nbsp;Ankit Awasthi","doi":"10.1208/s12249-024-03011-5","DOIUrl":null,"url":null,"abstract":"<div><p>Reactive oxygen species (ROS) play a dual role in cancer, acting as both signaling molecules that promote tumour growth and as agents that can inhibit tumour progression through cytotoxic effects. In cancer therapy, ROS-responsive drug delivery systems take advantage of the elevated ROS levels found in tumors compared to healthy tissues. These systems are engineered to release drugs precisely in response to increased ROS levels in tumour cells, allowing targeted and controlled treatment, minimizing side effects, and enhancing therapeutic outcomes. ROS generation in cancer cells is linked to metabolic changes, mitochondrial dysfunction, and oncogenic signaling, leading to increased oxidative stress. Tumour cells manage this by upregulating antioxidant defenses to prevent ROS from reaching harmful levels. This balance between ROS production and neutralization is critical for cancer cell survival, making ROS both a challenge and an opportunity for targeted therapies. ROS also connect inflammation and cancer. Chronic inflammation leads to elevated ROS, which can damage DNA and proteins, promoting mutations and cancer development. Additionally, ROS contribute to protein degradation, affecting essential cellular functions. Therapeutic strategies targeting ROS aim to either increase ROS beyond tolerable levels for cancer cells or inhibit their antioxidant defenses. Nanocarriers responsive to ROS show great potential in improving the precision of cancer treatments by releasing drugs specifically in high ROS environments, like tumors. This review discusses the mechanisms of ROS in cancer, its role in inflammation and protein degradation, and the advances in ROS-targeted nanocarrier therapies across different cancer types.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-03011-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive oxygen species (ROS) play a dual role in cancer, acting as both signaling molecules that promote tumour growth and as agents that can inhibit tumour progression through cytotoxic effects. In cancer therapy, ROS-responsive drug delivery systems take advantage of the elevated ROS levels found in tumors compared to healthy tissues. These systems are engineered to release drugs precisely in response to increased ROS levels in tumour cells, allowing targeted and controlled treatment, minimizing side effects, and enhancing therapeutic outcomes. ROS generation in cancer cells is linked to metabolic changes, mitochondrial dysfunction, and oncogenic signaling, leading to increased oxidative stress. Tumour cells manage this by upregulating antioxidant defenses to prevent ROS from reaching harmful levels. This balance between ROS production and neutralization is critical for cancer cell survival, making ROS both a challenge and an opportunity for targeted therapies. ROS also connect inflammation and cancer. Chronic inflammation leads to elevated ROS, which can damage DNA and proteins, promoting mutations and cancer development. Additionally, ROS contribute to protein degradation, affecting essential cellular functions. Therapeutic strategies targeting ROS aim to either increase ROS beyond tolerable levels for cancer cells or inhibit their antioxidant defenses. Nanocarriers responsive to ROS show great potential in improving the precision of cancer treatments by releasing drugs specifically in high ROS environments, like tumors. This review discusses the mechanisms of ROS in cancer, its role in inflammation and protein degradation, and the advances in ROS-targeted nanocarrier therapies across different cancer types.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信