Sulfur-doped titanium dioxide nanoparticles as effective photocatalytic for organic dyes elimination from water

IF 2.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Qais M. Al Bataineh, Ahmad A. Ahmad, Ala’ M. Bany Omar, Ihsan Aljarrah, Ahmad D. Telfah
{"title":"Sulfur-doped titanium dioxide nanoparticles as effective photocatalytic for organic dyes elimination from water","authors":"Qais M. Al Bataineh,&nbsp;Ahmad A. Ahmad,&nbsp;Ala’ M. Bany Omar,&nbsp;Ihsan Aljarrah,&nbsp;Ahmad D. Telfah","doi":"10.1140/epjp/s13360-024-05899-1","DOIUrl":null,"url":null,"abstract":"<div><p>The pollution of water carried on by industrialization is one of the most hazardous environmental issues. The main objective of this work is to develop a highly efficient photocatalytic nanostructure to eliminate the dyes in water. Pristine and sulfur-doped titanium dioxide nanoparticles (TiO<sub>2</sub>NPs and S-doped TiO<sub>2</sub>NPs) were successfully synthesized as an effective photocatalytic for organic dye elimination from water. The structural analysis confirms that the doping of TiO<sub>2</sub>NPs by sulfur anions causes an increase in particle size, crystallite size, and microstrain due to the replacement of oxygen ions with sulfur anions. The optical bandgap energy of TiO<sub>2</sub>NPs decreases from 3.21 to 3.14 eV upon doping TiO<sub>2</sub>NPs by sulfur anions. The average electrical conductivity values of pristine TiO<sub>2</sub>NPs and S-doped TiO<sub>2</sub>NPs are 3.96 × 10<sup>‒5</sup> S cm<sup>‒1</sup> and 4.75 × 10<sup>‒4</sup> S cm<sup>‒1</sup>, respectively. Sulfur dopants enable photocatalysts to effectively capture and transmit photoinduced charges, hence effectively suppressing charge recombination. Therefore, the pristine and S-doped TiO<sub>2</sub>NPs were used for photocatalytic degradation for selective dyes, i.e., MB, AO7, MO, and MR. The results demonstrate that S-doped TiO<sub>2</sub>NPs demonstrate higher photocatalytic efficiencies than pristine TiO<sub>2</sub>NPs. This research presents a novel approach to enhance the photocatalytic activity of TiO<sub>2</sub>NPs by incorporating sulfur doping.</p><h3>Graphical abstracts</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05899-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The pollution of water carried on by industrialization is one of the most hazardous environmental issues. The main objective of this work is to develop a highly efficient photocatalytic nanostructure to eliminate the dyes in water. Pristine and sulfur-doped titanium dioxide nanoparticles (TiO2NPs and S-doped TiO2NPs) were successfully synthesized as an effective photocatalytic for organic dye elimination from water. The structural analysis confirms that the doping of TiO2NPs by sulfur anions causes an increase in particle size, crystallite size, and microstrain due to the replacement of oxygen ions with sulfur anions. The optical bandgap energy of TiO2NPs decreases from 3.21 to 3.14 eV upon doping TiO2NPs by sulfur anions. The average electrical conductivity values of pristine TiO2NPs and S-doped TiO2NPs are 3.96 × 10‒5 S cm‒1 and 4.75 × 10‒4 S cm‒1, respectively. Sulfur dopants enable photocatalysts to effectively capture and transmit photoinduced charges, hence effectively suppressing charge recombination. Therefore, the pristine and S-doped TiO2NPs were used for photocatalytic degradation for selective dyes, i.e., MB, AO7, MO, and MR. The results demonstrate that S-doped TiO2NPs demonstrate higher photocatalytic efficiencies than pristine TiO2NPs. This research presents a novel approach to enhance the photocatalytic activity of TiO2NPs by incorporating sulfur doping.

Graphical abstracts

硫掺杂二氧化钛纳米颗粒对水中有机染料去除的有效光催化作用
工业化对水的污染是最危险的环境问题之一。本工作的主要目的是开发一种高效的光催化纳米结构来去除水中的染料。成功合成了纯净的和硫掺杂的二氧化钛纳米颗粒(TiO2NPs和s掺杂的TiO2NPs),作为一种有效的光催化剂,用于水中有机染料的去除。结构分析证实,硫阴离子掺杂TiO2NPs后,由于氧离子被硫阴离子取代,导致TiO2NPs的粒径、晶粒尺寸和微应变增大。硫阴离子掺杂TiO2NPs后,TiO2NPs的光学带隙能从3.21 eV降低到3.14 eV。原始TiO2NPs和S掺杂TiO2NPs的平均电导率分别为3.96 × 10-5 S cm-1和4.75 × 10-4 S cm-1。硫掺杂使光催化剂能够有效地捕获和传输光诱导电荷,从而有效地抑制电荷重组。因此,原始和s掺杂的TiO2NPs被用于光催化降解选择性染料,即MB, AO7, MO和mr。结果表明,s掺杂的TiO2NPs比原始TiO2NPs具有更高的光催化效率。本研究提出了一种通过硫掺杂来增强tio2纳米粒子光催化活性的新方法。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信