Ab initio study of LiMn2O4 cathode: electrochemical and optical properties for li-ion batteries and optoelectronic devices

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2024-10-05 DOI:10.1007/s11581-024-05841-6
A. Erraji, R. Masrour, L. Xu
{"title":"Ab initio study of LiMn2O4 cathode: electrochemical and optical properties for li-ion batteries and optoelectronic devices","authors":"A. Erraji,&nbsp;R. Masrour,&nbsp;L. Xu","doi":"10.1007/s11581-024-05841-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the structural, electrochemical and optical properties of Lithium manganese oxide (LiMn<sub>2</sub>O<sub>4</sub>) were studied through first-principles calculations based on density functional theory (DFT) using generalized gradient approximation (GGA). The LiMn<sub>2</sub>O<sub>4</sub> compound is metallic and The MnO<sub>2</sub> has a direct band gap equal to 0.42 eV using the GGA-PBE (Perdew-Burke-Ernzerhof) approach, 0.21 eV using the GGA-mBJ (modified Becke-Johnson) approach and 2.21 eV using the DFT + U (Density Functional Theory for the Hubbard model) approach. The insertion and extraction of lithium ions induce slight changes in the crystal volume of MnO<sub>2</sub>. In addition, the valence state of manganese shifts from + 4 to + 3.5 upon lithium insertion in MnO<sub>2</sub>. The spin polarisation (SP%) of LiMn<sub>2</sub>O<sub>4</sub> is 24% at the Fermi level (E<sub>F</sub>). We found that The Curie temperature (T<sub>c</sub>) of LiMn<sub>2</sub>O<sub>4</sub> equals 924 K using the GGA-PBE method, 955 K using the GGA-mBJ method and 1290 K using the DFT + U method. The calculations show that the typical full-cycle LiMn<sub>2</sub>O<sub>4</sub> battery balancing voltage (V<sub>cell</sub>) is 3.4 V and the cell capacity is 148 mAh.g<sup>−1</sup>. We also found that the energy density of the cell is 504 Wh.kg<sup>−1</sup>. We determined the optical properties of the two materials in particular absorption and conductivity. The static dielectric constants e<sub>1</sub>(0) of LiMn<sub>2</sub>O<sub>4</sub> and MnO<sub>2</sub> compounds are 39.64 and 9.08 respectively. The LiMn<sub>2</sub>O<sub>4</sub> compound shows an excellent absorption capacity in the UV region, indicating its potential application in optical memory devices. The high reflectivity in low energy ranges opens the possibility of using LiMn<sub>2</sub>O<sub>4</sub> as a coating material to reduce solar heating. The calculated formation energies confirmed that the LiMn<sub>2</sub>O<sub>4</sub> and MnO<sub>2</sub> compounds are thermodynamically stable. This means that LiMn<sub>2</sub>O<sub>4</sub> is more suitable for use in batteries and optoelectronic applications.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"30 12","pages":"7917 - 7928"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05841-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the structural, electrochemical and optical properties of Lithium manganese oxide (LiMn2O4) were studied through first-principles calculations based on density functional theory (DFT) using generalized gradient approximation (GGA). The LiMn2O4 compound is metallic and The MnO2 has a direct band gap equal to 0.42 eV using the GGA-PBE (Perdew-Burke-Ernzerhof) approach, 0.21 eV using the GGA-mBJ (modified Becke-Johnson) approach and 2.21 eV using the DFT + U (Density Functional Theory for the Hubbard model) approach. The insertion and extraction of lithium ions induce slight changes in the crystal volume of MnO2. In addition, the valence state of manganese shifts from + 4 to + 3.5 upon lithium insertion in MnO2. The spin polarisation (SP%) of LiMn2O4 is 24% at the Fermi level (EF). We found that The Curie temperature (Tc) of LiMn2O4 equals 924 K using the GGA-PBE method, 955 K using the GGA-mBJ method and 1290 K using the DFT + U method. The calculations show that the typical full-cycle LiMn2O4 battery balancing voltage (Vcell) is 3.4 V and the cell capacity is 148 mAh.g−1. We also found that the energy density of the cell is 504 Wh.kg−1. We determined the optical properties of the two materials in particular absorption and conductivity. The static dielectric constants e1(0) of LiMn2O4 and MnO2 compounds are 39.64 and 9.08 respectively. The LiMn2O4 compound shows an excellent absorption capacity in the UV region, indicating its potential application in optical memory devices. The high reflectivity in low energy ranges opens the possibility of using LiMn2O4 as a coating material to reduce solar heating. The calculated formation energies confirmed that the LiMn2O4 and MnO2 compounds are thermodynamically stable. This means that LiMn2O4 is more suitable for use in batteries and optoelectronic applications.

LiMn2O4阴极的从头算研究:锂离子电池和光电子器件的电化学和光学性质
本文采用基于密度泛函理论(DFT)和广义梯度近似(GGA)的第一性原理计算方法,研究了锂锰氧化物(LiMn2O4)的结构、电化学和光学性质。使用GGA-PBE (Perdew-Burke-Ernzerhof)方法,MnO2的直接带隙等于0.42 eV,使用GGA-mBJ(改进的Becke-Johnson)方法等于0.21 eV,使用DFT + U (Hubbard模型的密度泛函理论)方法等于2.21 eV。锂离子的插入和萃取会引起MnO2晶体体积的微小变化。另外,在MnO2中插入锂后,锰的价态从+ 4转变为+ 3.5。在费米能级(EF)上,LiMn2O4的自旋极化率(SP%)为24%。用GGA-PBE法测得LiMn2O4的居里温度(Tc)为924 K,用GGA-mBJ法测得居里温度为955 K,用DFT + U法测得居里温度为1290 K。计算结果表明,典型的全循环LiMn2O4电池平衡电压为3.4 V,电池容量为148 mAh.g−1。我们还发现电池的能量密度为504 Wh.kg−1。我们确定了两种材料的光学性质,特别是吸收和电导率。LiMn2O4和MnO2化合物的静态介电常数e1(0)分别为39.64和9.08。LiMn2O4化合物在紫外区表现出优异的吸收能力,表明其在光存储器件中的潜在应用。在低能量范围内的高反射率开启了使用LiMn2O4作为涂层材料以减少太阳加热的可能性。计算的生成能证实了LiMn2O4和MnO2化合物是热力学稳定的。这意味着LiMn2O4更适合用于电池和光电应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信