Jiwang Zhang, Liukui Hu, Dongdong Ji, Kaixin Su, Xingyu Chen
{"title":"The study on the high cycle fatigue performance and life prediction of Ti–6Al–4V alloy fabricated by laser engineered net shaping","authors":"Jiwang Zhang, Liukui Hu, Dongdong Ji, Kaixin Su, Xingyu Chen","doi":"10.1007/s10704-024-00814-2","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional characterization of internal defects in Ti–6Al–4V alloy fabricated by Laser Engineered Net Shaping (LENS) was conducted by utilizing synchrotron X-ray imaging technology. Subsequently, the statistical analysis of defect size, quantity, and morphology characteristics was performed. Additionally, high cycle fatigue tests were conducted to analyze the high cycle fatigue performance of LENS Ti–6Al–4V alloy and elucidate the causes of its anisotropic behavior. Furthermore, based on the multi-stage crack growth model, the high cycle fatigue life of LENS Ti–6Al–4V alloy was predicted. The results showed that the quantity and size of internal defects were small, with defects predominantly spherical pores and no lack of fusion defects detected. Longitudinal specimens exhibited significantly higher fatigue life at high stress levels compared to transverse specimens. The anisotropic behavior of high cycle fatigue performance of LENS Ti–6Al–4V alloy at high stress levels was mainly attributed to the anisotropic distribution of its microstructure, and defects had no impact on the fatigue performance of LENS Ti–6Al–4V alloy. As stress levels decreased, the fatigue life of both types of specimens approached each other, with fatigue strengths of 650 and 656 MPa at 2 × 10<sup>6</sup> cycles for longitudinal and transverse specimens respectively, showing minimal difference. In addition, the predictions from the multi-stage crack growth model aligned well with experimental results, effectively predicting the high cycle fatigue life of LENS Ti–6Al–4V alloy.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"248 1-3","pages":"275 - 290"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00814-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional characterization of internal defects in Ti–6Al–4V alloy fabricated by Laser Engineered Net Shaping (LENS) was conducted by utilizing synchrotron X-ray imaging technology. Subsequently, the statistical analysis of defect size, quantity, and morphology characteristics was performed. Additionally, high cycle fatigue tests were conducted to analyze the high cycle fatigue performance of LENS Ti–6Al–4V alloy and elucidate the causes of its anisotropic behavior. Furthermore, based on the multi-stage crack growth model, the high cycle fatigue life of LENS Ti–6Al–4V alloy was predicted. The results showed that the quantity and size of internal defects were small, with defects predominantly spherical pores and no lack of fusion defects detected. Longitudinal specimens exhibited significantly higher fatigue life at high stress levels compared to transverse specimens. The anisotropic behavior of high cycle fatigue performance of LENS Ti–6Al–4V alloy at high stress levels was mainly attributed to the anisotropic distribution of its microstructure, and defects had no impact on the fatigue performance of LENS Ti–6Al–4V alloy. As stress levels decreased, the fatigue life of both types of specimens approached each other, with fatigue strengths of 650 and 656 MPa at 2 × 106 cycles for longitudinal and transverse specimens respectively, showing minimal difference. In addition, the predictions from the multi-stage crack growth model aligned well with experimental results, effectively predicting the high cycle fatigue life of LENS Ti–6Al–4V alloy.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.