Li-ion transport in two-dimensional nanofluidic membranes

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gyu Won Kim, Minwoo Lee, Jihong Bae, Jihoon Han, Seokmin Park, Wooyoung Shim
{"title":"Li-ion transport in two-dimensional nanofluidic membranes","authors":"Gyu Won Kim,&nbsp;Minwoo Lee,&nbsp;Jihong Bae,&nbsp;Jihoon Han,&nbsp;Seokmin Park,&nbsp;Wooyoung Shim","doi":"10.1186/s40580-024-00465-y","DOIUrl":null,"url":null,"abstract":"<div><p>The growing demand for lithium, driven by its critical role in lithium-ion batteries (LIBs) and other applications, has intensified the need for efficient extraction methods from aqua-based resources such as seawater. Among various approaches, 2D channel membranes have emerged as promising candidates due to their tunable ion selectivity and scalability. While significant progress has been made in achieving high Li<sup>+</sup>/Mg<sup>2+</sup> selectivity, enhancing Li<sup>+</sup> ion selectivity over Na<sup>+</sup> ion, the dominant monovalent cation in seawater, remains a challenge due to their similar properties. This review provides a comprehensive analysis of the fundamental mechanisms underlying Li<sup>+</sup> selectivity in 2D channel membranes, focusing on the dehydration and diffusion processes that dictate ion transport. Inspired by the principles of biological ion channels, we identify key factors—channel size, surface charge, and binding sites—that influence energy barriers and shape the interplay between dehydration and diffusion. We highlight recent progress in leveraging these factors to enhance Li<sup>+</sup>/Na<sup>+</sup> selectivity and address the challenges posed by counteracting effects in ion transport. While substantial advancements have been made, the lack of comprehensive principles guiding the interplay of these variables across permeation steps represents a key obstacle to optimizing Li<sup>+</sup>/Na<sup>+</sup> selectivity. Nonetheless, with their inherent chemical stability and fabrication scalability, 2D channel membranes offer significant potential for lithium extraction if these challenges can be addressed. This review provides insights into the current state of 2D channel membrane technologies and outlines future directions for achieving enhanced Li<sup>+</sup> ion selectivity, particularly in seawater applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00465-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00465-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for lithium, driven by its critical role in lithium-ion batteries (LIBs) and other applications, has intensified the need for efficient extraction methods from aqua-based resources such as seawater. Among various approaches, 2D channel membranes have emerged as promising candidates due to their tunable ion selectivity and scalability. While significant progress has been made in achieving high Li+/Mg2+ selectivity, enhancing Li+ ion selectivity over Na+ ion, the dominant monovalent cation in seawater, remains a challenge due to their similar properties. This review provides a comprehensive analysis of the fundamental mechanisms underlying Li+ selectivity in 2D channel membranes, focusing on the dehydration and diffusion processes that dictate ion transport. Inspired by the principles of biological ion channels, we identify key factors—channel size, surface charge, and binding sites—that influence energy barriers and shape the interplay between dehydration and diffusion. We highlight recent progress in leveraging these factors to enhance Li+/Na+ selectivity and address the challenges posed by counteracting effects in ion transport. While substantial advancements have been made, the lack of comprehensive principles guiding the interplay of these variables across permeation steps represents a key obstacle to optimizing Li+/Na+ selectivity. Nonetheless, with their inherent chemical stability and fabrication scalability, 2D channel membranes offer significant potential for lithium extraction if these challenges can be addressed. This review provides insights into the current state of 2D channel membrane technologies and outlines future directions for achieving enhanced Li+ ion selectivity, particularly in seawater applications.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信