Ki-Hoon Son, Sehoon Oh, Junho Lee, Sobin Yun, Yunseo Shin, Shaohua Yan, Chaun Jang, Hong-Sub Lee, Hechang Lei, Se Young Park, Hyejin Ryu
{"title":"Persistent ferromagnetic ground state in pristine and Ni-doped Fe3GaTe2 flakes","authors":"Ki-Hoon Son, Sehoon Oh, Junho Lee, Sobin Yun, Yunseo Shin, Shaohua Yan, Chaun Jang, Hong-Sub Lee, Hechang Lei, Se Young Park, Hyejin Ryu","doi":"10.1186/s40580-024-00458-x","DOIUrl":null,"url":null,"abstract":"<div><p>Room-temperature magnetism and its stability upon miniaturization are essential characteristics required for materials for spintronic devices and information storage. Among various candidates, Fe<sub>3</sub>GaTe<sub>2</sub> stands out due to its high Curie temperature and strong perpendicular magnetic anisotropy (PMA), recently gaining large attention as one of the promising candidate materials for spintronics applications. In this study, we measured the thickness-dependent ferromagnetic properties of Fe<sub>3</sub>GaTe<sub>2</sub> and (Fe<sub>1 − x</sub>Ni<sub>x</sub>)<sub>3</sub>GaTe<sub>2</sub> (with x = 0.1) flakes. We observed that both pristine and Ni-doped Fe<sub>3</sub>GaTe<sub>2</sub> exhibit persistent ferromagnetism, with only a minor decrease in T<sub>C</sub> as the thickness is reduced to a few tens of nanometers. This capacity to retain robust ferromagnetic properties at reduced dimensions is highly advantageous for thin-film applications, which is crucial for the scaling of spintronic devices. Understanding and controlling thickness-dependent magnetic properties is fundamental to harnessing the full potential of Fe<sub>3</sub>GaTe<sub>2</sub> in van der Waals magnetic heterostructures and advanced spintronic technologies.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00458-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00458-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Room-temperature magnetism and its stability upon miniaturization are essential characteristics required for materials for spintronic devices and information storage. Among various candidates, Fe3GaTe2 stands out due to its high Curie temperature and strong perpendicular magnetic anisotropy (PMA), recently gaining large attention as one of the promising candidate materials for spintronics applications. In this study, we measured the thickness-dependent ferromagnetic properties of Fe3GaTe2 and (Fe1 − xNix)3GaTe2 (with x = 0.1) flakes. We observed that both pristine and Ni-doped Fe3GaTe2 exhibit persistent ferromagnetism, with only a minor decrease in TC as the thickness is reduced to a few tens of nanometers. This capacity to retain robust ferromagnetic properties at reduced dimensions is highly advantageous for thin-film applications, which is crucial for the scaling of spintronic devices. Understanding and controlling thickness-dependent magnetic properties is fundamental to harnessing the full potential of Fe3GaTe2 in van der Waals magnetic heterostructures and advanced spintronic technologies.
期刊介绍:
Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects.
Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.