Magnetic Layered MAOX Phases: DFT Screening of the Magnetic and Electronic Properties

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Natalia G. Zamkova, Vyacheslav S. Zhandun, Oksana N. Draganyuk
{"title":"Magnetic Layered MAOX Phases: DFT Screening of the Magnetic and Electronic Properties","authors":"Natalia G. Zamkova,&nbsp;Vyacheslav S. Zhandun,&nbsp;Oksana N. Draganyuk","doi":"10.1007/s10948-024-06835-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this manuscript we study the magnetic MAOX phases (M = Mn, Cr; A = Ga, Al, X = C) obtained by the replacement of the A-layer in the parent MAX phase by the AO<sub>2</sub> layer. The screening analysis of the magnetic and electronic properties of Mn- and Cr-based MAOX phases is performed using DFT calculations. All MAOX are thermodynamically stable. It was found that in MAOX phases Cr magnetic moments are pronounced increased in compare to corresponding MAX phase. Moreover, drastically changes in the electronic structure arise in Cr<sub>2</sub>AlO<sub>2</sub>C and Cr<sub>2</sub>GaO<sub>2</sub>C MAOX phases. The metal behavior in Cr<sub>2</sub>GaC MAX phase changes for the near to half-metallic behavior with 90% spin polarization at the Fermi energy in Cr<sub>2</sub>GaO<sub>2</sub>C MAOX phases. We have found that in Cr<sub>2</sub>AlO<sub>2</sub>C, the change in the electronic structure leads to the formation of the spin-gapless semiconductor state under slight extension in the ab plane. The obtained results make Cr<sub>2</sub>GaO<sub>2</sub>C and especially Cr<sub>2</sub>AlO<sub>2</sub>C prospective candidates for application as functional elements of electronics and spintronics. </p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06835-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript we study the magnetic MAOX phases (M = Mn, Cr; A = Ga, Al, X = C) obtained by the replacement of the A-layer in the parent MAX phase by the AO2 layer. The screening analysis of the magnetic and electronic properties of Mn- and Cr-based MAOX phases is performed using DFT calculations. All MAOX are thermodynamically stable. It was found that in MAOX phases Cr magnetic moments are pronounced increased in compare to corresponding MAX phase. Moreover, drastically changes in the electronic structure arise in Cr2AlO2C and Cr2GaO2C MAOX phases. The metal behavior in Cr2GaC MAX phase changes for the near to half-metallic behavior with 90% spin polarization at the Fermi energy in Cr2GaO2C MAOX phases. We have found that in Cr2AlO2C, the change in the electronic structure leads to the formation of the spin-gapless semiconductor state under slight extension in the ab plane. The obtained results make Cr2GaO2C and especially Cr2AlO2C prospective candidates for application as functional elements of electronics and spintronics. 

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信