Isabela Barreto da Costa Januário Meireles, André Felipe Oliveira, Michele Angela Rodrigues, Edésia Martins Barros de Sousa
{"title":"A platform of gold nanoparticles coated with silica as controlled drug delivery for application in cancer treatment","authors":"Isabela Barreto da Costa Januário Meireles, André Felipe Oliveira, Michele Angela Rodrigues, Edésia Martins Barros de Sousa","doi":"10.1007/s10853-024-10490-1","DOIUrl":null,"url":null,"abstract":"<div><p>The optical properties of gold nanoparticles are widely investigated with interest in their application in photohyperthermia cancer treatments. Coating these nanoparticles with MCM-41 silica not only protects the gold nanoparticles but also has the potential for use as a nanocarrier, because of its textural properties. This nanocarrier allows the incorporation of drugs, such as methotrexate (MTX), for use in chemotherapy. Therefore, this nanoplatform shows promise for the treatment of cancer by photohyperthermia and chemotherapy, making the therapy more targeted and effective. This study aimed to investigate the incorporation and release of MTX from a nanoplatform of gold nanoparticles coated with MCM-41, which presents relevant properties for application in photohyperthermia treatments. The results showed that the proposed nanosystem has high cell viability and low cytotoxicity, indicating its potential for application in biological systems. Furthermore, our findings demonstrated that FITC-conjugated MCM-41 nanoparticles were internalized by the cells. Additionally, it was observed that nanomaterials containing MTX showed high cytotoxicity only to tumor cells and that these nanocarriers were taken up by cells, suggesting their specificity in cancer treatment. The synthesized nanocomposite shows promise for applications in cancer treatment through photohyperthermia and chemotherapy.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 48","pages":"22181 - 22205"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10490-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The optical properties of gold nanoparticles are widely investigated with interest in their application in photohyperthermia cancer treatments. Coating these nanoparticles with MCM-41 silica not only protects the gold nanoparticles but also has the potential for use as a nanocarrier, because of its textural properties. This nanocarrier allows the incorporation of drugs, such as methotrexate (MTX), for use in chemotherapy. Therefore, this nanoplatform shows promise for the treatment of cancer by photohyperthermia and chemotherapy, making the therapy more targeted and effective. This study aimed to investigate the incorporation and release of MTX from a nanoplatform of gold nanoparticles coated with MCM-41, which presents relevant properties for application in photohyperthermia treatments. The results showed that the proposed nanosystem has high cell viability and low cytotoxicity, indicating its potential for application in biological systems. Furthermore, our findings demonstrated that FITC-conjugated MCM-41 nanoparticles were internalized by the cells. Additionally, it was observed that nanomaterials containing MTX showed high cytotoxicity only to tumor cells and that these nanocarriers were taken up by cells, suggesting their specificity in cancer treatment. The synthesized nanocomposite shows promise for applications in cancer treatment through photohyperthermia and chemotherapy.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.