Determination of Ultimate Functional Clearances of a Plain Bearing under Hydrodynamic Lubrication Conditions

IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL
O. A. Leonov, N. Zh. Shkaruba, Yu. G. Vergazova
{"title":"Determination of Ultimate Functional Clearances of a Plain Bearing under Hydrodynamic Lubrication Conditions","authors":"O. A. Leonov,&nbsp;N. Zh. Shkaruba,&nbsp;Yu. G. Vergazova","doi":"10.3103/S1068366624700338","DOIUrl":null,"url":null,"abstract":"<p>The article discusses the factors affecting the operation of sliding bearings. It is shown that based on the fundamental principles of hydrodynamic lubrication theory, transitioning from the formula characterizing the load-carrying capacity of the lubricant layer in sliding bearings to the parameters of oil film thickness and clearance allows for the derivation of expressions to determine functional clearances within which the bearing will operate under conditions of hydrodynamic friction. As a result of the calculations conducted for the sliding bearing of the conveyor drive reducer the limiting functional clearances were defined for the use of bushings of various lengths in accordance with GOST ISO 4379–2006. A rational length for the sliding bearing trunnion is justified based on the value of the maximum functional clearance and its influence on the deviation of the center distance in the gear transmission of the reducer. A new <i>H</i>8/<i>f</i>7 fit is proposed instead of the recommended <i>H</i>8/<i>g</i>7 and <i>H</i>8/<i>e</i>7 fits according to GOST ISO 4379–2006, as this will ensure the presence of a hydrodynamic wedge at the beginning of operation and provide the most rational material reserve for wear. The practical significance of the research lies in the applicability of the proposed approach in the design of sliding bearings operating under conditions of hydrodynamic lubrication, aimed at determining the rational length and fit of the mating elements in the bearing assembly.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"45 4","pages":"223 - 227"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366624700338","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The article discusses the factors affecting the operation of sliding bearings. It is shown that based on the fundamental principles of hydrodynamic lubrication theory, transitioning from the formula characterizing the load-carrying capacity of the lubricant layer in sliding bearings to the parameters of oil film thickness and clearance allows for the derivation of expressions to determine functional clearances within which the bearing will operate under conditions of hydrodynamic friction. As a result of the calculations conducted for the sliding bearing of the conveyor drive reducer the limiting functional clearances were defined for the use of bushings of various lengths in accordance with GOST ISO 4379–2006. A rational length for the sliding bearing trunnion is justified based on the value of the maximum functional clearance and its influence on the deviation of the center distance in the gear transmission of the reducer. A new H8/f7 fit is proposed instead of the recommended H8/g7 and H8/e7 fits according to GOST ISO 4379–2006, as this will ensure the presence of a hydrodynamic wedge at the beginning of operation and provide the most rational material reserve for wear. The practical significance of the research lies in the applicability of the proposed approach in the design of sliding bearings operating under conditions of hydrodynamic lubrication, aimed at determining the rational length and fit of the mating elements in the bearing assembly.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Friction and Wear
Journal of Friction and Wear ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
1.50
自引率
28.60%
发文量
21
审稿时长
6-12 weeks
期刊介绍: Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信