Root morphological and mechanical properties of Lespedeza bicolor Turcz. on slopes at different altitudes

IF 2.1 3区 农林科学 Q2 FORESTRY
Trees Pub Date : 2024-12-12 DOI:10.1007/s00468-024-02579-6
Meng Qi, Miaohan Li, Xiaowen Wang, Yuanyuan Song, Hailong Sun
{"title":"Root morphological and mechanical properties of Lespedeza bicolor Turcz. on slopes at different altitudes","authors":"Meng Qi,&nbsp;Miaohan Li,&nbsp;Xiaowen Wang,&nbsp;Yuanyuan Song,&nbsp;Hailong Sun","doi":"10.1007/s00468-024-02579-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Key message</h3><p>Root morphology and tensile strength were affected by elevation, with changes in the \nformer showing adaptation to the environment, and changes in the latter mainly influenced by root \nchemical composition.\n</p><h3>Abstract</h3><p>Plant roots have absorption and anchorage functions and play important roles in plant growth and slope stability. Root morphology and mechanics are closely related to root function and are influenced by various factors. However, the impact of elevation, which encompasses a range of environmental changes, has not been fully studied. This study aimed to investigate the responses of root morphology and root mechanics to environmental changes associated with elevation and to explore the possible effects of these responses on root reinforcement. We measured the morphological properties (length, diameter, and number), tensile strength, and chemical composition (cellulose, hemicellulose, and lignin contents) of the taproots and first- and second-order roots of <i>Lespedeza bicolor</i> Turcz<i>.</i> grown at three different elevations (986, 1839, and 2716 m). The lengths of both taproots and lateral roots decreased, while the diameter of lateral roots increased with increasing elevation. Additionally, there was a significant increase in root tensile strength as elevation increased, accompanied by an increase in cellulose content and a decrease in lignin content. Root tensile strength correlated positively with cellulose content and negatively with lignin content. The morphological and mechanical properties of <i>L. bicolor</i> roots are significantly influenced by elevation. Roots exhibit adaptive strategies in response to environmental factors such as hydrothermal conditions and soil nutrient availability. Cellulose and lignin have a significant impact on the biomechanical properties of roots. Regarding soil reinforcement, roots at lower elevations exhibit a more advantageous morphology. Conversely, roots at higher elevations possess greater biomass and tensile strength, making them more resistant to soil erosion under extreme environmental conditions.</p></div>","PeriodicalId":805,"journal":{"name":"Trees","volume":"39 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trees","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00468-024-02579-6","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Key message

Root morphology and tensile strength were affected by elevation, with changes in the former showing adaptation to the environment, and changes in the latter mainly influenced by root chemical composition.

Abstract

Plant roots have absorption and anchorage functions and play important roles in plant growth and slope stability. Root morphology and mechanics are closely related to root function and are influenced by various factors. However, the impact of elevation, which encompasses a range of environmental changes, has not been fully studied. This study aimed to investigate the responses of root morphology and root mechanics to environmental changes associated with elevation and to explore the possible effects of these responses on root reinforcement. We measured the morphological properties (length, diameter, and number), tensile strength, and chemical composition (cellulose, hemicellulose, and lignin contents) of the taproots and first- and second-order roots of Lespedeza bicolor Turcz. grown at three different elevations (986, 1839, and 2716 m). The lengths of both taproots and lateral roots decreased, while the diameter of lateral roots increased with increasing elevation. Additionally, there was a significant increase in root tensile strength as elevation increased, accompanied by an increase in cellulose content and a decrease in lignin content. Root tensile strength correlated positively with cellulose content and negatively with lignin content. The morphological and mechanical properties of L. bicolor roots are significantly influenced by elevation. Roots exhibit adaptive strategies in response to environmental factors such as hydrothermal conditions and soil nutrient availability. Cellulose and lignin have a significant impact on the biomechanical properties of roots. Regarding soil reinforcement, roots at lower elevations exhibit a more advantageous morphology. Conversely, roots at higher elevations possess greater biomass and tensile strength, making them more resistant to soil erosion under extreme environmental conditions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Trees
Trees 农林科学-林学
CiteScore
4.50
自引率
4.30%
发文量
113
审稿时长
3.8 months
期刊介绍: Trees - Structure and Function publishes original articles on the physiology, biochemistry, functional anatomy, structure and ecology of trees and other woody plants. Also presented are articles concerned with pathology and technological problems, when they contribute to the basic understanding of structure and function of trees. In addition to original articles and short communications, the journal publishes reviews on selected topics concerning the structure and function of trees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信