{"title":"Advances in self-powered biomaterials for bone defect repair","authors":"Nana Shen, Zhihao Zhang, Futong Wu, Zhongze Zhu, Jiarui Liu, Xiaoying Qi, Qiang Li, Xiaoxiong Wang, Qingming Ma, Hongfei Xiang","doi":"10.1007/s42114-024-01115-x","DOIUrl":null,"url":null,"abstract":"<div><p>Bone defects caused by aging populations and accidental injuries have a significant impact on human life, making bone repair and regeneration a research hotspot. The piezoelectric effect in biomaterials has shown great potential in bone defect treatment by converting mechanical stress into electrical signals to promote osteoblast behavior and subsequently accelerate bone regeneration. Electrical stimulation has been proven to improve the interfacial properties of biomaterials, enhancing cell adhesion and growth on the material surface, and promoting bone healing by regulating cellular behavior. With ongoing research on self-powered materials, various electroactive biomaterials have emerged. This review summarizes the mechanisms of bone repair and regeneration under electrical stimulation and the role of self-powered biomaterials in promoting bone regeneration by regulating the microenvironment. We present examples of applications combining biomaterials and electrical stimulation and discuss the challenges and future directions of these strategies for clinical translation. In conclusion, electroactive biomaterials show remarkable promise in bone defect treatment and provide a new therapeutic approach for bone regeneration.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-01115-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01115-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Bone defects caused by aging populations and accidental injuries have a significant impact on human life, making bone repair and regeneration a research hotspot. The piezoelectric effect in biomaterials has shown great potential in bone defect treatment by converting mechanical stress into electrical signals to promote osteoblast behavior and subsequently accelerate bone regeneration. Electrical stimulation has been proven to improve the interfacial properties of biomaterials, enhancing cell adhesion and growth on the material surface, and promoting bone healing by regulating cellular behavior. With ongoing research on self-powered materials, various electroactive biomaterials have emerged. This review summarizes the mechanisms of bone repair and regeneration under electrical stimulation and the role of self-powered biomaterials in promoting bone regeneration by regulating the microenvironment. We present examples of applications combining biomaterials and electrical stimulation and discuss the challenges and future directions of these strategies for clinical translation. In conclusion, electroactive biomaterials show remarkable promise in bone defect treatment and provide a new therapeutic approach for bone regeneration.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.