Plant–insect interactions: resistance mechanisms of barley against Mayetiola hordei

IF 1.2 3区 农林科学 Q3 ENTOMOLOGY
Sarra Guesmi, Abir Soltani, Mouhiba Ben Nasri Ayachi, Noura Omri, Khalil Khamassi, Mohsen Rezgui, Jouda Mediouni Ben Jemâa
{"title":"Plant–insect interactions: resistance mechanisms of barley against Mayetiola hordei","authors":"Sarra Guesmi,&nbsp;Abir Soltani,&nbsp;Mouhiba Ben Nasri Ayachi,&nbsp;Noura Omri,&nbsp;Khalil Khamassi,&nbsp;Mohsen Rezgui,&nbsp;Jouda Mediouni Ben Jemâa","doi":"10.1007/s11829-024-10111-3","DOIUrl":null,"url":null,"abstract":"<div><p>This work aims to enhance our understanding of plant-defense mechanisms, which is crucial for developing resistant crops following pest attacks. Focusing on the susceptibility of Tunisian barley to the gall midge <i>Mayetiola hordei</i>, the current study explores how gall formation affects the structure of attacked organs, and how sensitive and resistant barley cultivars respond to infestations. Two barley cultivars, Kounouz and Rihane, were selected for this experiment in two semi-arid regions of North Tunisia, Zaghouan and Kef. Sampling was carried out at four stages of barley development (tillering, elongation, heading, and ripening). Kef region was identified as the most affected area, recording significant economic and severe infestations for Kounouz variety, particularly at the ripening stage (53% and 24%, respectively). While Rihane variety demonstrated the least susceptibility, with only 4% of tillers severely infested during the heading stage in Kef and 7% in Zaghouan. This study detected structural changes in the stem induced by gall formation, revealing cellular hypertrophy, tissue hyperplasia, and lignin accumulation. Furthermore, the findings demonstrated a significant increase in total polyphenol compounds and total peroxidase activity upon gall midge attack. Polyphenol, flavonoid, condensed tannins, and peroxidase activity concentrations after infestation reached 1.312 ± 0.056 mgGAE/gWF; 1.457 ± 0.079 mgRE/gWF; 0.237 ± 0.036 mgCE/gWF; and 4.160 U/g FW, respectively, for Rihane variety during the heading stage of barley in Kef. The study also highlighted a linear relationship between peroxidase activity and total phenolic content post-infestation, underscoring the role of phenolic compounds and peroxidase activity in plant resistance and defense in response to <i>M. hordei</i>-induced stress.</p></div>","PeriodicalId":8409,"journal":{"name":"Arthropod-Plant Interactions","volume":"19 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthropod-Plant Interactions","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11829-024-10111-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to enhance our understanding of plant-defense mechanisms, which is crucial for developing resistant crops following pest attacks. Focusing on the susceptibility of Tunisian barley to the gall midge Mayetiola hordei, the current study explores how gall formation affects the structure of attacked organs, and how sensitive and resistant barley cultivars respond to infestations. Two barley cultivars, Kounouz and Rihane, were selected for this experiment in two semi-arid regions of North Tunisia, Zaghouan and Kef. Sampling was carried out at four stages of barley development (tillering, elongation, heading, and ripening). Kef region was identified as the most affected area, recording significant economic and severe infestations for Kounouz variety, particularly at the ripening stage (53% and 24%, respectively). While Rihane variety demonstrated the least susceptibility, with only 4% of tillers severely infested during the heading stage in Kef and 7% in Zaghouan. This study detected structural changes in the stem induced by gall formation, revealing cellular hypertrophy, tissue hyperplasia, and lignin accumulation. Furthermore, the findings demonstrated a significant increase in total polyphenol compounds and total peroxidase activity upon gall midge attack. Polyphenol, flavonoid, condensed tannins, and peroxidase activity concentrations after infestation reached 1.312 ± 0.056 mgGAE/gWF; 1.457 ± 0.079 mgRE/gWF; 0.237 ± 0.036 mgCE/gWF; and 4.160 U/g FW, respectively, for Rihane variety during the heading stage of barley in Kef. The study also highlighted a linear relationship between peroxidase activity and total phenolic content post-infestation, underscoring the role of phenolic compounds and peroxidase activity in plant resistance and defense in response to M. hordei-induced stress.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Arthropod-Plant Interactions
Arthropod-Plant Interactions 生物-昆虫学
CiteScore
3.00
自引率
6.20%
发文量
58
审稿时长
6 months
期刊介绍: Arthropod-Plant Interactions is dedicated to publishing high quality original papers and reviews with a broad fundamental or applied focus on ecological, biological, and evolutionary aspects of the interactions between insects and other arthropods with plants. Coverage extends to all aspects of such interactions including chemical, biochemical, genetic, and molecular analysis, as well reporting on multitrophic studies, ecophysiology, and mutualism. Arthropod-Plant Interactions encourages the submission of forum papers that challenge prevailing hypotheses. The journal encourages a diversity of opinion by presenting both invited and unsolicited review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信