Review on the application of density functional theory to predict the color, electronic, and optical properties of ceramic pigments along with experimental confirmation

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. Y. Vaselnia, M. Khajeh Aminian
{"title":"Review on the application of density functional theory to predict the color, electronic, and optical properties of ceramic pigments along with experimental confirmation","authors":"S. Y. Vaselnia,&nbsp;M. Khajeh Aminian","doi":"10.1007/s10853-024-10455-4","DOIUrl":null,"url":null,"abstract":"<p>Ceramic pigments are inorganic materials that can be used in industrial applications. Here, we reviewed the works reported in the literature where first-principles calculations based on density functional theory (DFT) have been used to predict the color, electronic, and optical properties, along with experimental confirmation. Recently, theoretically predicting the color of ceramic pigments has been proposed as a new idea, and some studies have been conducted in this field. The research papers calculated the different properties of pigments using DFT and provided a solution to predict the color of ceramic pigments. Herein, it has been shown how methods such as Lanczos, Bethe-Salpeter equation (BSE), and many-body <span>\\(F_{xc}\\)</span> kernel for long-range correction (LRC) model can be used to predict the absorption spectra of ceramic pigments. The absorption spectra data were imported into the Color Viewer software to calculate the color of the pigments. This review presents and discusses recent studies using DFT for ceramic pigments and explains how to complete this theory.</p>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 48","pages":"21987 - 22023"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10455-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ceramic pigments are inorganic materials that can be used in industrial applications. Here, we reviewed the works reported in the literature where first-principles calculations based on density functional theory (DFT) have been used to predict the color, electronic, and optical properties, along with experimental confirmation. Recently, theoretically predicting the color of ceramic pigments has been proposed as a new idea, and some studies have been conducted in this field. The research papers calculated the different properties of pigments using DFT and provided a solution to predict the color of ceramic pigments. Herein, it has been shown how methods such as Lanczos, Bethe-Salpeter equation (BSE), and many-body \(F_{xc}\) kernel for long-range correction (LRC) model can be used to predict the absorption spectra of ceramic pigments. The absorption spectra data were imported into the Color Viewer software to calculate the color of the pigments. This review presents and discusses recent studies using DFT for ceramic pigments and explains how to complete this theory.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信