Failure mechanism of toppling in anti-dip layered rock slope: a case study of the Xiangpingshan landslide in southwest China

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Changkui Wang, Leilei Jin, Wenxi Fu, Fei Ye, Rui Qian, Guangchao Lv, Shuang Yao
{"title":"Failure mechanism of toppling in anti-dip layered rock slope: a case study of the Xiangpingshan landslide in southwest China","authors":"Changkui Wang,&nbsp;Leilei Jin,&nbsp;Wenxi Fu,&nbsp;Fei Ye,&nbsp;Rui Qian,&nbsp;Guangchao Lv,&nbsp;Shuang Yao","doi":"10.1007/s10064-024-04026-9","DOIUrl":null,"url":null,"abstract":"<div><p>Landslides significantly impact human engineering practices. In the Wenshan section of the Tianbao-Houqiao Expressway in Yunnan, China, three closely spaced deformation zones emerged within the Xiangpingshan slope. Despite multiple rounds of reinforcement measures, including anti-slide piles and slope cutting excavations, one of these zones continued to experience deformation, posing a serious threat to both human life and property and causing frequent expressway closures. This study aims to analyze the surface features, deformation characteristics, and failure mechanisms of these deformation zones through detailed field investigations, InSAR analysis, numerical simulations, and monitoring data. The results show that the Xiangpingshan slope is an ancient landslide, characterized as an anti-dip layered rock slope. Engineering disturbance is the main triggering factor for these deformation zones. Zones I and II exhibit shallow deformation caused by sliding of the overburden. Zone III exhibits deep-seated deformation resulting from excavation disturbances. These disturbances initially triggered overburden sliding, followed by the sliding of the bedrock along fracture zones. A sliding-toppling failure mode is proposed for such slopes, which primarily occurs in anti-dip soft rock slopes. Reducing excavation and providing timely support after excavation, is crucial to prevent bedrock disturbance and the onset of deep-seated deformation. Additionally, this paper uses the Xiangpingshan landslide as a case study to summarize the multi-phase catastrophic process of large-scale toppling slopes, offering valuable insights for similar engineering projects.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04026-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Landslides significantly impact human engineering practices. In the Wenshan section of the Tianbao-Houqiao Expressway in Yunnan, China, three closely spaced deformation zones emerged within the Xiangpingshan slope. Despite multiple rounds of reinforcement measures, including anti-slide piles and slope cutting excavations, one of these zones continued to experience deformation, posing a serious threat to both human life and property and causing frequent expressway closures. This study aims to analyze the surface features, deformation characteristics, and failure mechanisms of these deformation zones through detailed field investigations, InSAR analysis, numerical simulations, and monitoring data. The results show that the Xiangpingshan slope is an ancient landslide, characterized as an anti-dip layered rock slope. Engineering disturbance is the main triggering factor for these deformation zones. Zones I and II exhibit shallow deformation caused by sliding of the overburden. Zone III exhibits deep-seated deformation resulting from excavation disturbances. These disturbances initially triggered overburden sliding, followed by the sliding of the bedrock along fracture zones. A sliding-toppling failure mode is proposed for such slopes, which primarily occurs in anti-dip soft rock slopes. Reducing excavation and providing timely support after excavation, is crucial to prevent bedrock disturbance and the onset of deep-seated deformation. Additionally, this paper uses the Xiangpingshan landslide as a case study to summarize the multi-phase catastrophic process of large-scale toppling slopes, offering valuable insights for similar engineering projects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信