Christophe Grojean, Guilherme Guedes, Jasper Roosmale Nepveu, Gabriel M. Salla
{"title":"A log story short: running contributions to radiative Higgs decays in the SMEFT","authors":"Christophe Grojean, Guilherme Guedes, Jasper Roosmale Nepveu, Gabriel M. Salla","doi":"10.1007/JHEP12(2024)065","DOIUrl":null,"url":null,"abstract":"<p>We investigate the renormalization of the radiative decays of the Higgs to two gauge bosons in the Standard Model Effective Field Theory at mass dimension eight. Given that these are loop-level processes, their one-loop renormalization can be phenomenologically important when triggered by operators generated through the tree-level exchange of heavy particles (assuming a weakly coupled UV model). By computing the tree-level matching conditions of all relevant extensions of the Standard Model, we demonstrate that this effect is indeed present in the <i>h</i> → <i>γZ</i> decay at dimension eight, even though it is absent at dimension six. In contrast, the <i>h</i> → <i>gg</i> and <i>h</i> → <i>γγ</i> decays can only be renormalized by operators generated by one-loop processes. For UV models with heavy vectors, this conclusion hinges on the specific form of their interaction with massless gauge bosons which is required for perturbative unitarity. We study the quantitative impact of the possible logarithmic enhancement of <i>h</i> → <i>γZ</i>, and we propose an observable to boost the sensitivity to this effect. Given the expected increased precision of next-generation high-energy experiments, this dimension-eight contribution could be large enough to be probed and could therefore give valuable clues about new physics by revealing some of its structural features manifesting first at dimension eight.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 12","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP12(2024)065.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP12(2024)065","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the renormalization of the radiative decays of the Higgs to two gauge bosons in the Standard Model Effective Field Theory at mass dimension eight. Given that these are loop-level processes, their one-loop renormalization can be phenomenologically important when triggered by operators generated through the tree-level exchange of heavy particles (assuming a weakly coupled UV model). By computing the tree-level matching conditions of all relevant extensions of the Standard Model, we demonstrate that this effect is indeed present in the h → γZ decay at dimension eight, even though it is absent at dimension six. In contrast, the h → gg and h → γγ decays can only be renormalized by operators generated by one-loop processes. For UV models with heavy vectors, this conclusion hinges on the specific form of their interaction with massless gauge bosons which is required for perturbative unitarity. We study the quantitative impact of the possible logarithmic enhancement of h → γZ, and we propose an observable to boost the sensitivity to this effect. Given the expected increased precision of next-generation high-energy experiments, this dimension-eight contribution could be large enough to be probed and could therefore give valuable clues about new physics by revealing some of its structural features manifesting first at dimension eight.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).