Proving the absence of large one-loop corrections to the power spectrum of curvature perturbations in transient ultra-slow-roll inflation within the path-integral approach
{"title":"Proving the absence of large one-loop corrections to the power spectrum of curvature perturbations in transient ultra-slow-roll inflation within the path-integral approach","authors":"Ryodai Kawaguchi, Shinji Tsujikawa, Yusuke Yamada","doi":"10.1007/JHEP12(2024)095","DOIUrl":null,"url":null,"abstract":"<p>We revisit one-loop corrections to the power spectrum of curvature perturbations <i>ζ</i> in an inflationary scenario containing a transient ultra-slow-roll (USR) period. In ref. [1], it was argued that one-loop corrections to the power spectrum of <i>ζ</i> can be larger than the tree-level one within the parameter region generating the seeds of primordial black holes during the USR epoch, which implies the breakdown of perturbation theory. We prove that this is not the case by using a master formula for one-loop corrections to the power spectrum obtained in ref. [2]. We derive the same formula within the path-integral formalism, which is simpler than the original derivation in [2]. To show the smallness of one-loop corrections, the consistency relations and the effective constancy of tree-level mode functions of <i>ζ</i> for super-Hubble modes play essential roles, with which the master formula gives a simple expression for one-loop corrections. For concreteness, we provide a reduced set of interactions including the leading-order one, while establishing the consistency relations in a self-consistent manner. We also show how the consistency relations of various operators hold explicitly, which plays a key role in proving the absence of large one-loop corrections.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 12","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP12(2024)095.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP12(2024)095","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We revisit one-loop corrections to the power spectrum of curvature perturbations ζ in an inflationary scenario containing a transient ultra-slow-roll (USR) period. In ref. [1], it was argued that one-loop corrections to the power spectrum of ζ can be larger than the tree-level one within the parameter region generating the seeds of primordial black holes during the USR epoch, which implies the breakdown of perturbation theory. We prove that this is not the case by using a master formula for one-loop corrections to the power spectrum obtained in ref. [2]. We derive the same formula within the path-integral formalism, which is simpler than the original derivation in [2]. To show the smallness of one-loop corrections, the consistency relations and the effective constancy of tree-level mode functions of ζ for super-Hubble modes play essential roles, with which the master formula gives a simple expression for one-loop corrections. For concreteness, we provide a reduced set of interactions including the leading-order one, while establishing the consistency relations in a self-consistent manner. We also show how the consistency relations of various operators hold explicitly, which plays a key role in proving the absence of large one-loop corrections.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).