Hydrothermal synthesis of novel CeO2/g-C3N4 nanocomposite: dual function of highly efficient supercapacitor electrode and Pt-free counter electrode for dye synthesized solar cell applications

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2024-10-17 DOI:10.1007/s11581-024-05874-x
A. Sathik Basha, S. Ramachandran, S. Vadivel, Razan A. Alshgari
{"title":"Hydrothermal synthesis of novel CeO2/g-C3N4 nanocomposite: dual function of highly efficient supercapacitor electrode and Pt-free counter electrode for dye synthesized solar cell applications","authors":"A. Sathik Basha,&nbsp;S. Ramachandran,&nbsp;S. Vadivel,&nbsp;Razan A. Alshgari","doi":"10.1007/s11581-024-05874-x","DOIUrl":null,"url":null,"abstract":"<div><p>Here, we show how to make highly nitrogen-containing graphite carbon (g-C<sub>3</sub>N<sub>4</sub>)-coated rare earth metal oxide of CeO<sub>2</sub> nanotubes (CeO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>), which is usable as a dual function of supercapacitor electrode and counter electrode for dye-sensitized solar cells (DSSCs). Transmission electron microscopy (TEM), field emission scanning electron spectroscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDX) techniques have all been used to examine the surface morphology and chemical data of the catalyst. The CeO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>-composited electrode exhibits high-specific capacitance of 614 Fg<sup>−1</sup> at 2 Ag<sup>−1</sup>. Based on the Trassati method, the CeO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> electrode exhibits 92% capacitive behavior at 100 mVs<sup>−1</sup>. The CeO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> electrode exhibits 91.6% cyclic stability after 10,000 cycles. The DSSCs made with CeO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> exhibited outstanding catalytic activity and a PCE of 8.13% compared to 8.02% for a standard electrode made of Pt. Due to the composite material’s outstanding catalytic performance and good electrical conductivity, this has occurred. However, the electrical conductivity of the titanium mesh is high. And compared to an FTO substrate, it can enhance the region of contact between the electrode material and the substrate. It can enhance <i>I</i><sup>−</sup>/<i>I</i><sup>−3</sup>’s capacity to speed up electron transmission by diffusion.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"30 12","pages":"8295 - 8311"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05874-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we show how to make highly nitrogen-containing graphite carbon (g-C3N4)-coated rare earth metal oxide of CeO2 nanotubes (CeO2/g-C3N4), which is usable as a dual function of supercapacitor electrode and counter electrode for dye-sensitized solar cells (DSSCs). Transmission electron microscopy (TEM), field emission scanning electron spectroscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDX) techniques have all been used to examine the surface morphology and chemical data of the catalyst. The CeO2/g-C3N4-composited electrode exhibits high-specific capacitance of 614 Fg−1 at 2 Ag−1. Based on the Trassati method, the CeO2/g-C3N4 electrode exhibits 92% capacitive behavior at 100 mVs−1. The CeO2/g-C3N4 electrode exhibits 91.6% cyclic stability after 10,000 cycles. The DSSCs made with CeO2/g-C3N4 exhibited outstanding catalytic activity and a PCE of 8.13% compared to 8.02% for a standard electrode made of Pt. Due to the composite material’s outstanding catalytic performance and good electrical conductivity, this has occurred. However, the electrical conductivity of the titanium mesh is high. And compared to an FTO substrate, it can enhance the region of contact between the electrode material and the substrate. It can enhance I/I−3’s capacity to speed up electron transmission by diffusion.

新型CeO2/g-C3N4纳米复合材料的水热合成:染料合成太阳能电池中高效超级电容器电极和无pt对电极的双重功能
本文展示了如何制备高含氮石墨碳(g-C3N4)包覆稀土金属氧化物的CeO2纳米管(CeO2/g-C3N4),该纳米管可作为染料敏化太阳能电池(DSSCs)的超级电容器电极和对电极的双重功能。透射电子显微镜(TEM)、场发射扫描电子能谱(FESEM)和能量色散x射线能谱(EDX)技术都被用来检查催化剂的表面形貌和化学数据。CeO2/g- c3n4复合电极在2ag−1时具有614 Fg−1的高比电容。基于Trassati方法,CeO2/g-C3N4电极在100 mv−1时表现出92%的电容性。在10000次循环后,CeO2/g-C3N4电极的循环稳定性为91.6%。由CeO2/g-C3N4制成的DSSCs具有出色的催化活性,PCE为8.13%,而由Pt制成的标准电极的PCE为8.02%。由于复合材料具有出色的催化性能和良好的导电性,这一结果得以实现。但钛网的导电性高。与FTO衬底相比,它可以增强电极材料与衬底之间的接触区域。它可以增强I−/I−3通过扩散加速电子传输的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信