Size-dependency and lattice-discreetness effect on fracture toughness in 2D crystals under antiplanar loading

IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Thuy Nguyen, Daniel Bonamy
{"title":"Size-dependency and lattice-discreetness effect on fracture toughness in 2D crystals under antiplanar loading","authors":"Thuy Nguyen,&nbsp;Daniel Bonamy","doi":"10.1007/s10704-024-00812-4","DOIUrl":null,"url":null,"abstract":"<div><p>Fracture toughness is the material property characterizing resistance to failure. Predicting its value from the solid structure at the atomistic scale remains elusive, even in the simplest situations of brittle fracture. We report here numerical simulations of crack propagation in two-dimensional fuse networks of different periodic geometries, which are electrical analogs of bidimensional brittle crystals under antiplanar loading. Fracture energy is determined from Griffith’s analysis of energy balance during crack propagation, and fracture toughness is determined from fits of the displacement fields with Williams’ asymptotic solutions. Significant size dependencies are evidenced in small lattices, with fracture energy and fracture toughness both converging algebraically with system size toward well-defined material-constant values in the limit of infinite system size. The convergence speed depends on the loading conditions and is faster when the symmetry of the considered lattice increases. The material constants at infinity obey Irwin’s relation and properly define the material resistance to failure. Their values are approached up to <span>\\(\\sim 15\\%\\)</span> using the recent analytical method proposed in Nguyen and Bonamy (Phys Rev Lett 123:205503, 2019). Nevertheless, the deviation remains finite and does not vanish when the system size goes to infinity. We finally show that this deviation is a consequence of the lattice discreetness and decreases when the super-singular terms of Williams’ solutions (absent in a continuum medium but present here due to lattice discreetness) are taken into account.\n</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"248 1-3","pages":"257 - 273"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00812-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00812-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fracture toughness is the material property characterizing resistance to failure. Predicting its value from the solid structure at the atomistic scale remains elusive, even in the simplest situations of brittle fracture. We report here numerical simulations of crack propagation in two-dimensional fuse networks of different periodic geometries, which are electrical analogs of bidimensional brittle crystals under antiplanar loading. Fracture energy is determined from Griffith’s analysis of energy balance during crack propagation, and fracture toughness is determined from fits of the displacement fields with Williams’ asymptotic solutions. Significant size dependencies are evidenced in small lattices, with fracture energy and fracture toughness both converging algebraically with system size toward well-defined material-constant values in the limit of infinite system size. The convergence speed depends on the loading conditions and is faster when the symmetry of the considered lattice increases. The material constants at infinity obey Irwin’s relation and properly define the material resistance to failure. Their values are approached up to \(\sim 15\%\) using the recent analytical method proposed in Nguyen and Bonamy (Phys Rev Lett 123:205503, 2019). Nevertheless, the deviation remains finite and does not vanish when the system size goes to infinity. We finally show that this deviation is a consequence of the lattice discreetness and decreases when the super-singular terms of Williams’ solutions (absent in a continuum medium but present here due to lattice discreetness) are taken into account.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信