{"title":"Evaluation on performances restoration and warm-mix effect of rejuvenated SBS modified bitumen incorporating a compound rejuvenator","authors":"Jiange Li, Zhixiang Wang, Zhengqi Zhang, Chupeng Chen, Chuanhai Wu, Hongjun Jing, Bin Tang","doi":"10.1617/s11527-024-02475-y","DOIUrl":null,"url":null,"abstract":"<div><p>It is important to fully restore the performance of aged styrene–butadiene–styrene (SBS) modified bitumen (SMB) and reduce its construction temperatures in high-value recycling the waste SMB mixtures. This study aims to assess the performances regeneration and warm-mixing effects on aged SMB by using a compound rejuvenator, i.e. reactive warm-mix rejuvenator (RWR), which consisted of rubber oil, epoxy-terminated polybutadiene ether, cardanol (CA), modified polyethylene (PE) wax and antiaging agent. Two commercial rejuvenators were employed to compare with the RWR. The rejuvenating effects were evaluated through frequency sweep test, multiple stress creep test, cracking temperature test, linear amplitude sweep test, and chemical and morphological structure analyses. The warm-mixing effect was explored by the rotational plate viscosity test. Results indicate that RWR can react with oxygen-containing functional groups on broken molecular chains of SBS polymer with the catalysis of triethanolamine, which enables fractured crosslinking network structure to be repaired successfully. Meanwhile, light components supplied by RWR is able to restore the bitumen matrix of aged SMB to a similar level of original SMB. The RWR is able to effectively restore the viscoelasticity and plateau region of phase angle of aged SMB to the level that is mostly close to that of original SMB, while those two commercial rejuvenators are barely satisfactory. When the RWR content is 12%, the rejuvenated SMB exhibits the satisfactory high- and low-temperature performances, and the better fatigue resistance ability by comparing with original SMB. The modified PE wax in RWR has a lubrication effect on the interaction between macromolecular polymer chains, which gives rise to significant reduction in construction temperatures of rejuvenated SMB incorporating the RWR.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02475-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is important to fully restore the performance of aged styrene–butadiene–styrene (SBS) modified bitumen (SMB) and reduce its construction temperatures in high-value recycling the waste SMB mixtures. This study aims to assess the performances regeneration and warm-mixing effects on aged SMB by using a compound rejuvenator, i.e. reactive warm-mix rejuvenator (RWR), which consisted of rubber oil, epoxy-terminated polybutadiene ether, cardanol (CA), modified polyethylene (PE) wax and antiaging agent. Two commercial rejuvenators were employed to compare with the RWR. The rejuvenating effects were evaluated through frequency sweep test, multiple stress creep test, cracking temperature test, linear amplitude sweep test, and chemical and morphological structure analyses. The warm-mixing effect was explored by the rotational plate viscosity test. Results indicate that RWR can react with oxygen-containing functional groups on broken molecular chains of SBS polymer with the catalysis of triethanolamine, which enables fractured crosslinking network structure to be repaired successfully. Meanwhile, light components supplied by RWR is able to restore the bitumen matrix of aged SMB to a similar level of original SMB. The RWR is able to effectively restore the viscoelasticity and plateau region of phase angle of aged SMB to the level that is mostly close to that of original SMB, while those two commercial rejuvenators are barely satisfactory. When the RWR content is 12%, the rejuvenated SMB exhibits the satisfactory high- and low-temperature performances, and the better fatigue resistance ability by comparing with original SMB. The modified PE wax in RWR has a lubrication effect on the interaction between macromolecular polymer chains, which gives rise to significant reduction in construction temperatures of rejuvenated SMB incorporating the RWR.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.