Calcium-atom-modified boron phosphide (BP) biphenylene as an efficient hydrogen storage material†

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2024-12-12 DOI:10.1039/D4RA07271E
Yusuf Zuntu Abdullahi, Ikram Djebablia, Tiem Leong Yoon and Lim Thong Leng
{"title":"Calcium-atom-modified boron phosphide (BP) biphenylene as an efficient hydrogen storage material†","authors":"Yusuf Zuntu Abdullahi, Ikram Djebablia, Tiem Leong Yoon and Lim Thong Leng","doi":"10.1039/D4RA07271E","DOIUrl":null,"url":null,"abstract":"<p >Porous nanosheets have attracted significant attention as viable options for energy storage materials because of their exceptionally large specific surface areas. A recent study (<em>Int. J. Hydrogen Energy</em>, 2024, <strong>66</strong>, 33–39) has demonstrated that Li/Na-metalized inorganic BP-biphenylene (b-B<small><sub>3</sub></small>P<small><sub>3</sub></small>) and graphenylene (g-B<small><sub>6</sub></small>P<small><sub>6</sub></small>) analogues possess suitable functionalities for hydrogen (H<small><sub>2</sub></small>) storage. Herein, we evaluate the H<small><sub>2</sub></small> storage performance of alkaline earth metal (AEM = Be, Mg, Ca)-decorated b-B<small><sub>3</sub></small>P<small><sub>3</sub></small> and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small> structures based on first-principles density functional theory (DFT) calculations. Our investigations revealed that individual Be and Mg atoms are not stable on pure b-B<small><sub>3</sub></small>P<small><sub>3</sub></small> and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small> sheets, and the formation of aggregates is favored due to their low binding energy to these surfaces. However, the binding energy improves for Ca-decorated b-B<small><sub>3</sub></small>P<small><sub>3</sub></small> (b-B<small><sub>3</sub></small>P<small><sub>3</sub></small>(<em>m</em>Ca)) and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small> (g-B<small><sub>6</sub></small>P<small><sub>6</sub></small>(<em>n</em>Ca)) structures, forming stable and uniform <em>m</em>Ca(<em>n</em>Ca) (<em>m</em> and <em>n</em> stand for the numbers of Ca atom) coverages on both sides. Under maximum hydrogenation, the b-B<small><sub>3</sub></small>P<small><sub>3</sub></small>(8Ca) and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small>(16Ca) structures exhibited the ability to adsorb up to 32H<small><sub>2</sub></small> and 48H<small><sub>2</sub></small> molecules with average adsorption energy (<em>E</em><small><sub>a</sub></small>) values of −0.23 eV per H<small><sub>2</sub></small> and −0.25 eV per H<small><sub>2</sub></small>, respectively. Gravimetric H<small><sub>2</sub></small> uptakes of 7.28 wt% and 5.56 wt% were found for b-B<small><sub>3</sub></small>P<small><sub>3</sub></small>(8Ca)@32H<small><sub>2</sub></small> and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small>(16Ca)@48H<small><sub>2</sub></small> systems, exceeding the target of 5.50 wt% set by the US Department of Energy (DOE) to be reached by 2025. Our findings indicate the importance of these b-B<small><sub>3</sub></small>P<small><sub>3</sub></small> and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small> sheets for H<small><sub>2</sub></small> storage technologies.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 53","pages":" 39268-39275"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra07271e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07271e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Porous nanosheets have attracted significant attention as viable options for energy storage materials because of their exceptionally large specific surface areas. A recent study (Int. J. Hydrogen Energy, 2024, 66, 33–39) has demonstrated that Li/Na-metalized inorganic BP-biphenylene (b-B3P3) and graphenylene (g-B6P6) analogues possess suitable functionalities for hydrogen (H2) storage. Herein, we evaluate the H2 storage performance of alkaline earth metal (AEM = Be, Mg, Ca)-decorated b-B3P3 and g-B6P6 structures based on first-principles density functional theory (DFT) calculations. Our investigations revealed that individual Be and Mg atoms are not stable on pure b-B3P3 and g-B6P6 sheets, and the formation of aggregates is favored due to their low binding energy to these surfaces. However, the binding energy improves for Ca-decorated b-B3P3 (b-B3P3(mCa)) and g-B6P6 (g-B6P6(nCa)) structures, forming stable and uniform mCa(nCa) (m and n stand for the numbers of Ca atom) coverages on both sides. Under maximum hydrogenation, the b-B3P3(8Ca) and g-B6P6(16Ca) structures exhibited the ability to adsorb up to 32H2 and 48H2 molecules with average adsorption energy (Ea) values of −0.23 eV per H2 and −0.25 eV per H2, respectively. Gravimetric H2 uptakes of 7.28 wt% and 5.56 wt% were found for b-B3P3(8Ca)@32H2 and g-B6P6(16Ca)@48H2 systems, exceeding the target of 5.50 wt% set by the US Department of Energy (DOE) to be reached by 2025. Our findings indicate the importance of these b-B3P3 and g-B6P6 sheets for H2 storage technologies.

Abstract Image

钙原子修饰磷化硼(BP)联苯作为高效储氢材料†
多孔纳米片由于其特别大的比表面积而成为储能材料的可行选择,引起了人们的极大关注。最近的一项研究(国际)。[j] .氢能,2024,66,33-39)已经证明了Li/ na金属化无机bp -联苯(b-B3P3)和石墨烯(g-B6P6)类似物具有合适的储氢功能。本文基于第一性原理密度泛函理论(DFT)计算,评价了碱土金属(AEM = Be, Mg, Ca)修饰的b-B3P3和g-B6P6结构的储氢性能。我们的研究表明,单独的Be和Mg原子在纯b-B3P3和g-B6P6薄片上不稳定,由于它们与这些表面的低结合能,有利于形成聚集体。而Ca修饰的b-B3P3(b-B3P3(mCa))和g-B6P6(g-B6P6(nCa))结构的结合能有所提高,两侧形成稳定均匀的mCa(nCa) (m和n为Ca原子数)覆盖层。在最大加氢条件下,b-B3P3(8Ca)和g-B6P6(16Ca)结构能够吸附32H2和48H2分子,平均吸附能(Ea)分别为−0.23 eV / H2和−0.25 eV / H2。b-B3P3(8Ca)@32H2和g-B6P6(16Ca)@48H2系统的重量H2吸收率分别为7.28 wt%和5.56 wt%,超过了美国能源部(DOE)设定的到2025年达到5.50 wt%的目标。我们的研究结果表明了这些b-B3P3和g-B6P6薄片对氢气储存技术的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信