Controlled tuning of HOMO and LUMO levels in supramolecular nano-Saturn complexes†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2024-12-12 DOI:10.1039/D4RA07068B
Maria Maqbool and Khurshid Ayub
{"title":"Controlled tuning of HOMO and LUMO levels in supramolecular nano-Saturn complexes†","authors":"Maria Maqbool and Khurshid Ayub","doi":"10.1039/D4RA07068B","DOIUrl":null,"url":null,"abstract":"<p >Optoelectronics usually deals with the fabrication of devices that can interconvert light and electrical energy using semiconductors. The modification of electronic properties is crucial in the field of optoelectronics. The tuning of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and their energy gaps is of paramount interest in this domain. Herein, three nano-Saturn supramolecular complex systems are designed, <em>i.e.</em>, Al<small><sub>12</sub></small>N<small><sub>12</sub></small>@S-belt, Mg<small><sub>12</sub></small>O<small><sub>12</sub></small>@S-belt, and B<small><sub>12</sub></small>P<small><sub>12</sub></small>@S-belt, using S-belt as the host and Al<small><sub>12</sub></small>N<small><sub>12</sub></small>, Mg<small><sub>12</sub></small>O<small><sub>12</sub></small>, and B<small><sub>12</sub></small>P<small><sub>12</sub></small> nanocages as guests. The high interaction energies ranging from −22.03 to −63.64 kcal mol<small><sup>−1</sup></small> for the complexes demonstrate the stability of these host–guest complexes. Frontier molecular orbital (FMO) analysis shows that the HOMO of the complexes originates from the HOMO of the host, and the LUMO of the complexes originate entirely from the LUMO of the guests. The partial density of states (PDOS) analysis is in corroboration with FMO, which provides graphical illustration of the origin of HOMO and LUMO levels and the energy gaps. The shift in the electron density upon complexation is demonstrated by the natural bond orbital (NBO) charge analysis. For the Al<small><sub>12</sub></small>N<small><sub>12</sub></small>@S-belt and B<small><sub>12</sub></small>P<small><sub>12</sub></small>@S-belt complexes, the direction of electron density shift is towards the guest species, as indicated by the overall negative charge on encapsulated Al<small><sub>12</sub></small>N<small><sub>12</sub></small> and B<small><sub>12</sub></small>P<small><sub>12</sub></small>. For the Mg<small><sub>12</sub></small>O<small><sub>12</sub></small>@S-belt complex, the overall NBO charge is positive, elaborating the direction of overall shift of electronic density towards the S-belt. Electron density difference (EDD) analysis verifies and corroborates with these findings. Noncovalent interaction index (NCI) and quantum theory of atoms in molecules (QTAIM) analyses signify that the complexes are stabilized <em>via</em> van der Waals interactions. Absorption analysis explains that all the complexes absorb in the ultraviolet (UV) region. Overall, this study explains the formation of stable host–guest supramolecular nano-Saturn complexes along with the controlled tuning of HOMO and LUMO levels over the host and guests, respectively.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 53","pages":" 39395-39407"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra07068b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07068b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optoelectronics usually deals with the fabrication of devices that can interconvert light and electrical energy using semiconductors. The modification of electronic properties is crucial in the field of optoelectronics. The tuning of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and their energy gaps is of paramount interest in this domain. Herein, three nano-Saturn supramolecular complex systems are designed, i.e., Al12N12@S-belt, Mg12O12@S-belt, and B12P12@S-belt, using S-belt as the host and Al12N12, Mg12O12, and B12P12 nanocages as guests. The high interaction energies ranging from −22.03 to −63.64 kcal mol−1 for the complexes demonstrate the stability of these host–guest complexes. Frontier molecular orbital (FMO) analysis shows that the HOMO of the complexes originates from the HOMO of the host, and the LUMO of the complexes originate entirely from the LUMO of the guests. The partial density of states (PDOS) analysis is in corroboration with FMO, which provides graphical illustration of the origin of HOMO and LUMO levels and the energy gaps. The shift in the electron density upon complexation is demonstrated by the natural bond orbital (NBO) charge analysis. For the Al12N12@S-belt and B12P12@S-belt complexes, the direction of electron density shift is towards the guest species, as indicated by the overall negative charge on encapsulated Al12N12 and B12P12. For the Mg12O12@S-belt complex, the overall NBO charge is positive, elaborating the direction of overall shift of electronic density towards the S-belt. Electron density difference (EDD) analysis verifies and corroborates with these findings. Noncovalent interaction index (NCI) and quantum theory of atoms in molecules (QTAIM) analyses signify that the complexes are stabilized via van der Waals interactions. Absorption analysis explains that all the complexes absorb in the ultraviolet (UV) region. Overall, this study explains the formation of stable host–guest supramolecular nano-Saturn complexes along with the controlled tuning of HOMO and LUMO levels over the host and guests, respectively.

Abstract Image

超分子纳米土星复合物中HOMO和LUMO水平的可控调谐
光电子学通常涉及制造可以使用半导体将光能和电能相互转换的器件。在光电子学领域中,电子性质的修饰是至关重要的。最高已占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)及其能隙的调谐是该领域最重要的研究方向。本文以S-belt为主体,Al12N12、Mg12O12、B12P12纳米笼为客体,设计了三种纳米土星超分子复合物体系Al12N12@S-belt、Mg12O12@S-belt、B12P12@S-belt。配合物的高相互作用能范围为- 22.03 ~ - 63.64 kcal mol - 1,证明了这些主客体配合物的稳定性。前沿分子轨道(FMO)分析表明,配合物的HOMO来源于宿主的HOMO,而配合物的LUMO则完全来源于客体的LUMO。偏态密度(PDOS)分析结果与FMO分析结果一致,为HOMO和LUMO能级的起源和能隙提供了图形化的说明。自然键轨道(NBO)电荷分析证实了电子密度在络合过程中的变化。对于Al12N12@S-belt和B12P12@S-belt配合物,电子密度向客体物质方向移动,这可以从包裹Al12N12和B12P12的整体负电荷看出。对于Mg12O12@S-belt配合物,NBO电荷总体为正,说明电子密度总体向s带移动的方向。电子密度差(EDD)分析证实了这些发现。非共价相互作用指数(NCI)和分子原子量子理论(QTAIM)分析表明,配合物是通过范德华相互作用稳定的。吸收分析表明,所有配合物都在紫外区吸收。总的来说,本研究解释了稳定的主-客体超分子纳米土星复合物的形成,以及宿主和客体上HOMO和LUMO水平的可控调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信