Boosting Efficient Reinforcement Learning for Vision-and-Language Navigation With Open-Sourced LLM

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Jiawei Wang;Teng Wang;Wenzhe Cai;Lele Xu;Changyin Sun
{"title":"Boosting Efficient Reinforcement Learning for Vision-and-Language Navigation With Open-Sourced LLM","authors":"Jiawei Wang;Teng Wang;Wenzhe Cai;Lele Xu;Changyin Sun","doi":"10.1109/LRA.2024.3511402","DOIUrl":null,"url":null,"abstract":"Vision-and-Language Navigation (VLN) requires an agent to navigate in photo-realistic environments based on language instructions. Existing methods typically employ imitation learning to train agents. However, approaches based on recurrent neural networks suffer from poor generalization, while transformer-based methods are too large in scale for practical deployment. In contrast, reinforcement learning (RL) agents can overcome dataset limitations and learn navigation policies that adapt to environment changes. However, without expert trajectories for supervision, agents struggle to learn effective long-term navigation policies from sparse environment rewards. Instruction decomposition enables agents to learn value estimation faster, making agents more efficient in learning VLN tasks. We propose the Decomposing Instructions with Large Language Models for Vision-and-Language Navigation (DILLM-VLN) method, which decomposes complex navigation instructions into simple, interpretable sub-instructions using a lightweight, open-sourced LLM and trains RL agents to complete these sub-instructions sequentially. Based on these interpretable sub-instructions, we introduce the cascaded multi-scale attention (CMA) and a novel multi-modal fusion discriminator (MFD). CMA integrates instruction features at different scales to provide precise textual guidance. MFD combines scene, object, and action information to comprehensively assess the completion of sub-instructions. Experiment results show that DILLM-VLN significantly improves baseline performance, demonstrating its potential for practical applications.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 1","pages":"612-619"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777561/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Vision-and-Language Navigation (VLN) requires an agent to navigate in photo-realistic environments based on language instructions. Existing methods typically employ imitation learning to train agents. However, approaches based on recurrent neural networks suffer from poor generalization, while transformer-based methods are too large in scale for practical deployment. In contrast, reinforcement learning (RL) agents can overcome dataset limitations and learn navigation policies that adapt to environment changes. However, without expert trajectories for supervision, agents struggle to learn effective long-term navigation policies from sparse environment rewards. Instruction decomposition enables agents to learn value estimation faster, making agents more efficient in learning VLN tasks. We propose the Decomposing Instructions with Large Language Models for Vision-and-Language Navigation (DILLM-VLN) method, which decomposes complex navigation instructions into simple, interpretable sub-instructions using a lightweight, open-sourced LLM and trains RL agents to complete these sub-instructions sequentially. Based on these interpretable sub-instructions, we introduce the cascaded multi-scale attention (CMA) and a novel multi-modal fusion discriminator (MFD). CMA integrates instruction features at different scales to provide precise textual guidance. MFD combines scene, object, and action information to comprehensively assess the completion of sub-instructions. Experiment results show that DILLM-VLN significantly improves baseline performance, demonstrating its potential for practical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信