{"title":"RecGS: Removing Water Caustic With Recurrent Gaussian Splatting","authors":"Tianyi Zhang;Weiming Zhi;Braden Meyers;Nelson Durrant;Kaining Huang;Joshua Mangelson;Corina Barbalata;Matthew Johnson-Roberson","doi":"10.1109/LRA.2024.3511418","DOIUrl":null,"url":null,"abstract":"Water caustics are commonly observed in seafloor imaging data from shallow-water areas. Traditional methods that remove caustic patterns from images often rely on 2D filtering or pre-training on an annotated dataset, hindering the performance when generalizing to real-world seafloor data with 3D structures. In this letter, we present a novel method \n<italic>Recurrent Gaussian Splatting</i>\n (RecGS), which takes advantage of today's photorealistic 3D reconstruction technology, 3D Gaussian Splatting (3DGS), to separate caustics from seafloor imagery. With a sequence of images taken by an underwater robot, we build 3DGS recurrently and decompose the caustic with low-pass filtering in each iteration. In the experiments, we analyze and compare with different methods, including joint optimization, 2D filtering, and deep learning approaches. The results show that our proposed RecGS paradigm can effectively separate the caustic from the seafloor, improving the visual appearance, and can be potentially applied on more problems with inconsistent illumination.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 1","pages":"668-675"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777046/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Water caustics are commonly observed in seafloor imaging data from shallow-water areas. Traditional methods that remove caustic patterns from images often rely on 2D filtering or pre-training on an annotated dataset, hindering the performance when generalizing to real-world seafloor data with 3D structures. In this letter, we present a novel method
Recurrent Gaussian Splatting
(RecGS), which takes advantage of today's photorealistic 3D reconstruction technology, 3D Gaussian Splatting (3DGS), to separate caustics from seafloor imagery. With a sequence of images taken by an underwater robot, we build 3DGS recurrently and decompose the caustic with low-pass filtering in each iteration. In the experiments, we analyze and compare with different methods, including joint optimization, 2D filtering, and deep learning approaches. The results show that our proposed RecGS paradigm can effectively separate the caustic from the seafloor, improving the visual appearance, and can be potentially applied on more problems with inconsistent illumination.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.