{"title":"Generation of OAM Beams With Constant Beam Radius","authors":"Muyao Wang;Runyu Lyu;Hailin Zhang","doi":"10.1109/LCOMM.2024.3489276","DOIUrl":null,"url":null,"abstract":"The utilisation of orbital angular momentum (OAM) in next-generation wireless communication has become a research focus in recent years. The extremely high spectral efficiency of OAM is crucial for meeting future wireless communication demands. However, OAM-based wireless communication faces a significant challenge known as the hollow divergence effect, which reduces received power and signal integrity. This letter proposes a method to focus the OAM beam using the transmitting array to eliminate the divergence. Our proposed method generates an approximate ideal OAM (A-OAM) beam within a specific tolerance range around the receiver. Compared to traditional diverging OAM (D-OAM), the A-OAM beam does not diverge within its tolerance range. Specifically, we first propose the focusing method and system model for A-OAM by investigating its propagation characteristics. Then, we evaluate the focusing method through simulations ranging from 6 to 14 metres. The results are consistent with our theoretical expectations. A-OAM enables the simultaneous reception of multiple OAM modes over long distances, significantly enhancing the robustness of OAM-based wireless communication.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 12","pages":"2899-2903"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740267/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The utilisation of orbital angular momentum (OAM) in next-generation wireless communication has become a research focus in recent years. The extremely high spectral efficiency of OAM is crucial for meeting future wireless communication demands. However, OAM-based wireless communication faces a significant challenge known as the hollow divergence effect, which reduces received power and signal integrity. This letter proposes a method to focus the OAM beam using the transmitting array to eliminate the divergence. Our proposed method generates an approximate ideal OAM (A-OAM) beam within a specific tolerance range around the receiver. Compared to traditional diverging OAM (D-OAM), the A-OAM beam does not diverge within its tolerance range. Specifically, we first propose the focusing method and system model for A-OAM by investigating its propagation characteristics. Then, we evaluate the focusing method through simulations ranging from 6 to 14 metres. The results are consistent with our theoretical expectations. A-OAM enables the simultaneous reception of multiple OAM modes over long distances, significantly enhancing the robustness of OAM-based wireless communication.
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.