Deep Reinforcement Learning Assisted Multi-Operator Spectrum Sharing in Cell-Free MIMO Networks

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Minsu Shin;Danish Mehmood Mughal;Sang-Hyo Kim;Min Young Chung
{"title":"Deep Reinforcement Learning Assisted Multi-Operator Spectrum Sharing in Cell-Free MIMO Networks","authors":"Minsu Shin;Danish Mehmood Mughal;Sang-Hyo Kim;Min Young Chung","doi":"10.1109/LCOMM.2024.3481450","DOIUrl":null,"url":null,"abstract":"This letter introduces a deep reinforcement learning (DRL)-assisted multi-operator spectrum sharing methodology in cell-free multi-input multi-output (CF-MIMO) networks. Existing schemes mainly focus on cognitive communications or rely on strong operators’ coordination. Our approach leverages DRL agents at the access points (APs) of each mobile network operator (MNO) for dynamic spectrum sharing across separate frequency bands. These DRL agents operate independently, selecting the spectrum resources from other MNOs’ bands with minimal inter-operator information exchange between the central processing units (CPUs). Performance evaluation under various scenarios demonstrates that DRL agents at APs can effectively learn optimal resource allocation, leading to improvements in delay, network throughput, and user-perceived throughput performance compared to the conventional non-spectrum sharing scheme.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 12","pages":"2894-2898"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10720198/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter introduces a deep reinforcement learning (DRL)-assisted multi-operator spectrum sharing methodology in cell-free multi-input multi-output (CF-MIMO) networks. Existing schemes mainly focus on cognitive communications or rely on strong operators’ coordination. Our approach leverages DRL agents at the access points (APs) of each mobile network operator (MNO) for dynamic spectrum sharing across separate frequency bands. These DRL agents operate independently, selecting the spectrum resources from other MNOs’ bands with minimal inter-operator information exchange between the central processing units (CPUs). Performance evaluation under various scenarios demonstrates that DRL agents at APs can effectively learn optimal resource allocation, leading to improvements in delay, network throughput, and user-perceived throughput performance compared to the conventional non-spectrum sharing scheme.
深度强化学习辅助的无小区MIMO网络多运营商频谱共享
这封信介绍了一种在无小区多输入多输出(CF-MIMO)网络中深度强化学习(DRL)辅助的多运营商频谱共享方法。现有方案主要侧重于认知通信或依赖于强运营商协同。我们的方法利用每个移动网络运营商(MNO)接入点(ap)的DRL代理,实现跨不同频段的动态频谱共享。这些DRL代理独立运行,从其他移动网络运营商的频段中选择频谱资源,在中央处理器(cpu)之间进行最小的运营商间信息交换。各种场景下的性能评估表明,与传统的非频谱共享方案相比,ap上的DRL代理可以有效地学习最优资源分配,从而提高延迟、网络吞吐量和用户感知吞吐量性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信