Deep Unintentional Modulation Feature Extraction Framework Based on Decomposition Reconstruction and Metric Learning

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Wei Zhang;Lutao Liu;Yilin Jiang;Yuxin Liu
{"title":"Deep Unintentional Modulation Feature Extraction Framework Based on Decomposition Reconstruction and Metric Learning","authors":"Wei Zhang;Lutao Liu;Yilin Jiang;Yuxin Liu","doi":"10.1109/LCOMM.2024.3486280","DOIUrl":null,"url":null,"abstract":"In this letter, the avoiding of the powerful interference of intentional modulation (IM) information on unintentional modulation (UM) feature is primarily studied. To address this challenging issue, a novel framework for deep UM feature extraction is proposed. The ideas of decomposition reconstruction and metric learning are introduced into deep learning. Meanwhile, an objective function is designed to automatically learn the deep UM feature that is insensitive to the IM information. The experimental results show the remarkable stability and separability of the deep UM feature across measured data with variable IM parameters.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 12","pages":"2854-2858"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10735159/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, the avoiding of the powerful interference of intentional modulation (IM) information on unintentional modulation (UM) feature is primarily studied. To address this challenging issue, a novel framework for deep UM feature extraction is proposed. The ideas of decomposition reconstruction and metric learning are introduced into deep learning. Meanwhile, an objective function is designed to automatically learn the deep UM feature that is insensitive to the IM information. The experimental results show the remarkable stability and separability of the deep UM feature across measured data with variable IM parameters.
基于分解重构和度量学习的深度无意调制特征提取框架
本文主要研究了有意调制(IM)信息对无意调制(UM)特征的强干扰的避免。为了解决这一具有挑战性的问题,提出了一种新的深度UM特征提取框架。将分解重构和度量学习的思想引入深度学习。同时,设计了一个目标函数来自动学习对IM信息不敏感的深度UM特征。实验结果表明,在不同IM参数的测量数据中,深度UM特征具有显著的稳定性和可分离性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信