Federated $c$-Means and Fuzzy $c$-Means Clustering Algorithms for Horizontally and Vertically Partitioned Data

José Luis Corcuera Bárcena;Francesco Marcelloni;Alessandro Renda;Alessio Bechini;Pietro Ducange
{"title":"Federated $c$-Means and Fuzzy $c$-Means Clustering Algorithms for Horizontally and Vertically Partitioned Data","authors":"José Luis Corcuera Bárcena;Francesco Marcelloni;Alessandro Renda;Alessio Bechini;Pietro Ducange","doi":"10.1109/TAI.2024.3426408","DOIUrl":null,"url":null,"abstract":"Federated clustering lets multiple data owners collaborate in discovering patterns from distributed data without violating privacy requirements. The federated versions of traditional clustering algorithms proposed so far are, however, “lossy” since they fail to identify exactly the same clusters as the original versions executed on the merged data stored in a centralized server, as would happen if no privacy constraint occurred. In this article, we propose federated procedures for losslessly executing the C-means (CM) and the fuzzy C-means (FCM) algorithms in both horizontally and vertically partitioned data scenarios, while preserving data privacy. We formally prove that the proposed federated procedures identify the same clusters determined by applying the algorithms to the union of all local data. Further, we present an extensive experimental analysis for characterizing the behavior of the proposed approach in a typical federated learning scenario, that is, as the fraction of participants in the federation changes. We focus on the federated FCM and the horizontally partitioned data, which is the most interesting scenario. We show that the proposed procedure is effective and is able to achieve competitive performance with respect to two recently proposed versions of federated FCM for horizontally partitioned data.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"6426-6441"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10595840","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10595840/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated clustering lets multiple data owners collaborate in discovering patterns from distributed data without violating privacy requirements. The federated versions of traditional clustering algorithms proposed so far are, however, “lossy” since they fail to identify exactly the same clusters as the original versions executed on the merged data stored in a centralized server, as would happen if no privacy constraint occurred. In this article, we propose federated procedures for losslessly executing the C-means (CM) and the fuzzy C-means (FCM) algorithms in both horizontally and vertically partitioned data scenarios, while preserving data privacy. We formally prove that the proposed federated procedures identify the same clusters determined by applying the algorithms to the union of all local data. Further, we present an extensive experimental analysis for characterizing the behavior of the proposed approach in a typical federated learning scenario, that is, as the fraction of participants in the federation changes. We focus on the federated FCM and the horizontally partitioned data, which is the most interesting scenario. We show that the proposed procedure is effective and is able to achieve competitive performance with respect to two recently proposed versions of federated FCM for horizontally partitioned data.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信