Deep Learning-Based Dual Watermarking for Image Copyright Protection and Authentication

Sudev Kumar Padhi;Archana Tiwari;Sk. Subidh Ali
{"title":"Deep Learning-Based Dual Watermarking for Image Copyright Protection and Authentication","authors":"Sudev Kumar Padhi;Archana Tiwari;Sk. Subidh Ali","doi":"10.1109/TAI.2024.3485519","DOIUrl":null,"url":null,"abstract":"Advancements in digital technologies make it easy to modify the content of digital images. Hence, ensuring digital images’ integrity and authenticity is necessary to protect them against various attacks that manipulate them. We present a deep learning (DL) based dual invisible watermarking technique for performing source authentication, content authentication, and protecting digital content copyright of images sent over the internet. Beyond securing images, the proposed technique demonstrates robustness to content-preserving image manipulation attacks. It is also impossible to imitate or overwrite watermarks because the cryptographic hash of the image and the dominant features of the image in the form of perceptual hash are used as watermarks. We highlighted the need for source authentication to safeguard image integrity and authenticity, along with identifying similar content for copyright protection. After exhaustive testing, our technique obtained a high peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), which implies there is a minute change in the original image after embedding our watermarks. Our trained model achieves high watermark extraction accuracy and satisfies two different objectives of verification and authentication on the same watermarked image.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"6134-6145"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10734256/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in digital technologies make it easy to modify the content of digital images. Hence, ensuring digital images’ integrity and authenticity is necessary to protect them against various attacks that manipulate them. We present a deep learning (DL) based dual invisible watermarking technique for performing source authentication, content authentication, and protecting digital content copyright of images sent over the internet. Beyond securing images, the proposed technique demonstrates robustness to content-preserving image manipulation attacks. It is also impossible to imitate or overwrite watermarks because the cryptographic hash of the image and the dominant features of the image in the form of perceptual hash are used as watermarks. We highlighted the need for source authentication to safeguard image integrity and authenticity, along with identifying similar content for copyright protection. After exhaustive testing, our technique obtained a high peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), which implies there is a minute change in the original image after embedding our watermarks. Our trained model achieves high watermark extraction accuracy and satisfies two different objectives of verification and authentication on the same watermarked image.
基于深度学习的图像版权保护与认证双水印
数字技术的进步使得修改数字图像的内容变得很容易。因此,确保数字图像的完整性和真实性是必要的,以保护他们免受各种攻击操纵他们。我们提出了一种基于深度学习(DL)的双重不可见水印技术,用于执行源认证、内容认证和保护通过互联网发送的图像的数字内容版权。除了保护图像之外,所提出的技术还证明了对内容保留图像操作攻击的鲁棒性。由于图像的加密哈希和图像以感知哈希形式的主要特征被用作水印,因此也不可能模仿或覆盖水印。我们强调了源认证的必要性,以保障图像的完整性和真实性,以及识别版权保护的类似内容。经过详尽的测试,我们的技术获得了很高的峰值信噪比(PSNR)和结构相似性指数(SSIM),这意味着在嵌入水印后原始图像有微小的变化。我们训练的模型具有较高的水印提取精度,并且在同一幅水印图像上满足验证和认证两个不同的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信