Direct Adversarial Latent Estimation to Evaluate Decision Boundary Complexity in Black Box Models

Ashley S. Dale;Lauren Christopher
{"title":"Direct Adversarial Latent Estimation to Evaluate Decision Boundary Complexity in Black Box Models","authors":"Ashley S. Dale;Lauren Christopher","doi":"10.1109/TAI.2024.3455308","DOIUrl":null,"url":null,"abstract":"A trustworthy artificial intelligence (AI) model should be robust to perturbed data, where robustness correlates with the dimensionality and linearity of feature representations in the model latent space. Existing methods for evaluating feature representations in the latent space are restricted to white-box models. In this work, we introduce \n<italic>direct adversarial latent estimation</i>\n (DALE) for evaluating the robustness of feature representations and decision boundaries for target black-box models. A surrogate latent space is created using a variational autoencoder (VAE) trained on a disjoint dataset from an object classification backbone, then the VAE latent space is traversed to create sets of adversarial images. An object classification model is trained using transfer learning on the VAE image reconstructions, then classifies instances in the adversarial image set. We propose that the number of times the classification changes in an image set indicates the complexity of the decision boundaries in the classifier latent space; more complex decision boundaries are found to be more robust. This is confirmed by comparing the DALE distributions to the degradation of the classifier F1 scores in the presence of adversarial attacks. This work enables the first comparisons of latent-space complexity between black box models by relating model robustness to complex decision boundaries.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"6043-6053"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669090/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A trustworthy artificial intelligence (AI) model should be robust to perturbed data, where robustness correlates with the dimensionality and linearity of feature representations in the model latent space. Existing methods for evaluating feature representations in the latent space are restricted to white-box models. In this work, we introduce direct adversarial latent estimation (DALE) for evaluating the robustness of feature representations and decision boundaries for target black-box models. A surrogate latent space is created using a variational autoencoder (VAE) trained on a disjoint dataset from an object classification backbone, then the VAE latent space is traversed to create sets of adversarial images. An object classification model is trained using transfer learning on the VAE image reconstructions, then classifies instances in the adversarial image set. We propose that the number of times the classification changes in an image set indicates the complexity of the decision boundaries in the classifier latent space; more complex decision boundaries are found to be more robust. This is confirmed by comparing the DALE distributions to the degradation of the classifier F1 scores in the presence of adversarial attacks. This work enables the first comparisons of latent-space complexity between black box models by relating model robustness to complex decision boundaries.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信