{"title":"Principle and Progress of Interconnection Layers in Monolithic Perovskite-Based Tandem Photovoltaics","authors":"Chong Dong, Shuyu Yan, Dayu Liu, Yongxin Zhu, Chao Chen, Jiang Tang","doi":"10.1002/aenm.202404628","DOIUrl":null,"url":null,"abstract":"Interconnection layers (ICLs) serve as critical components in monolithic perovskite-based tandem solar cells (Pe-TSCs), determining the series connection between the top and bottom sub-cells. ICLs have garnered considerable attention, with numerous studies focusing on their experimental effects. However, their operational mechanism and overall impact on Pe-TSCs remain underexplored. This review elucidates the structure and functionality of ICLs, distinguishing the working mechanisms between Pe-TSCs and traditional multijunction solar cells. The carrier injection balance around ICLs and its impact on the tandem device performance is delved into. The discussion also encompasses current advancements of ICLs within Pe-TSCs, and focuses on the uniqueness of ICLs in Pe-TSCs and evaluation methods. Finally, the requirements of ICLs in Pe-TSCs are proposed, and provide cogitations about the potential designs and stability of ICLs. This review not only deepens the physical understanding of ICLs but also broadens the research scope in tandem photovoltaics.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"10 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404628","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Interconnection layers (ICLs) serve as critical components in monolithic perovskite-based tandem solar cells (Pe-TSCs), determining the series connection between the top and bottom sub-cells. ICLs have garnered considerable attention, with numerous studies focusing on their experimental effects. However, their operational mechanism and overall impact on Pe-TSCs remain underexplored. This review elucidates the structure and functionality of ICLs, distinguishing the working mechanisms between Pe-TSCs and traditional multijunction solar cells. The carrier injection balance around ICLs and its impact on the tandem device performance is delved into. The discussion also encompasses current advancements of ICLs within Pe-TSCs, and focuses on the uniqueness of ICLs in Pe-TSCs and evaluation methods. Finally, the requirements of ICLs in Pe-TSCs are proposed, and provide cogitations about the potential designs and stability of ICLs. This review not only deepens the physical understanding of ICLs but also broadens the research scope in tandem photovoltaics.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.