Joy A. Kumagai, Maurice C. Goodman, Juan Carlos Villaseñor-Derbez, David S. Schoeman, Kyle C. Cavanuagh, Tom W. Bell, Fiorenza Micheli, Giulio De Leo, Nur Arafeh-Dalmau
{"title":"Marine Protected Areas That Preserve Trophic Cascades Promote Resilience of Kelp Forests to Marine Heatwaves","authors":"Joy A. Kumagai, Maurice C. Goodman, Juan Carlos Villaseñor-Derbez, David S. Schoeman, Kyle C. Cavanuagh, Tom W. Bell, Fiorenza Micheli, Giulio De Leo, Nur Arafeh-Dalmau","doi":"10.1111/gcb.17620","DOIUrl":null,"url":null,"abstract":"<p>Under accelerating threats from climate-change impacts, marine protected areas (MPAs) have been proposed as climate-adaptation tools to enhance the resilience of marine ecosystems. Yet, debate persists as to whether and how MPAs may promote resilience to climate shocks. Here, we use 38 years of satellite-derived kelp cover to empirically test whether a network of 58 temperate coastal MPAs in Central and Southern California enhances the resistance of kelp forest ecosystems to, and their recovery from, the unprecedented 2014–2016 marine heatwave regime that occurred in the region. We also leverage a 22-year time series of subtidal community surveys to mechanistically understand whether trophic cascades explain emergent patterns in kelp forest resilience within MPAs. We find that fully protected MPAs significantly enhance kelp forests' resistance to and recovery from marine heatwaves in Southern California, but not in Central California. Differences in regional responses to the heatwaves are partly explained by three-level trophic interactions comprising kelp, urchins, and predators of urchins. Urchin densities in Southern California MPAs are lower within fully protected MPAs during and after the heatwave, while the abundances of their main predators—lobster and sheephead—are higher. In Central California, a region without lobster or sheephead, there is no significant difference in urchin or kelp densities within MPAs as the current urchin predator, the sea otter, is protected statewide. Our analyses show that fully protected MPAs can be effective climate-adaptation tools, but their ability to enhance resilience to extreme climate events depends upon region-specific environmental and trophic interactions. As nations progress to protect 30% of the oceans by 2030, scientists and managers should consider whether protection will increase resilience to climate-change impacts given their local ecological contexts, and what additional measures may be needed.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 12","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.17620","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17620","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Under accelerating threats from climate-change impacts, marine protected areas (MPAs) have been proposed as climate-adaptation tools to enhance the resilience of marine ecosystems. Yet, debate persists as to whether and how MPAs may promote resilience to climate shocks. Here, we use 38 years of satellite-derived kelp cover to empirically test whether a network of 58 temperate coastal MPAs in Central and Southern California enhances the resistance of kelp forest ecosystems to, and their recovery from, the unprecedented 2014–2016 marine heatwave regime that occurred in the region. We also leverage a 22-year time series of subtidal community surveys to mechanistically understand whether trophic cascades explain emergent patterns in kelp forest resilience within MPAs. We find that fully protected MPAs significantly enhance kelp forests' resistance to and recovery from marine heatwaves in Southern California, but not in Central California. Differences in regional responses to the heatwaves are partly explained by three-level trophic interactions comprising kelp, urchins, and predators of urchins. Urchin densities in Southern California MPAs are lower within fully protected MPAs during and after the heatwave, while the abundances of their main predators—lobster and sheephead—are higher. In Central California, a region without lobster or sheephead, there is no significant difference in urchin or kelp densities within MPAs as the current urchin predator, the sea otter, is protected statewide. Our analyses show that fully protected MPAs can be effective climate-adaptation tools, but their ability to enhance resilience to extreme climate events depends upon region-specific environmental and trophic interactions. As nations progress to protect 30% of the oceans by 2030, scientists and managers should consider whether protection will increase resilience to climate-change impacts given their local ecological contexts, and what additional measures may be needed.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.