{"title":"Microfluidics and Spectral Induced Polarization for Direct Observation and Petrophysical Modeling of Calcite Dissolution","authors":"F. Rembert, P. Leroy, A. Lassin, S. Roman","doi":"10.1029/2024gl111271","DOIUrl":null,"url":null,"abstract":"We investigate how micro-geoelectrical monitoring is promising for studying microscale coupled processes since it facilitates the upscaling of pore-scale observations and enhances the petrophysical interpretation of the geoelectrical measurements. Microscale geophysics using microfluidics emerges and combines direct visualization of pore scale dynamics and chemical reactivity with geoelectrical monitoring. Calcite dissolution is a usual geochemical reaction considered as an analog of water–mineral interactions involved in the critical zone. We develop a numerical workflow combining image processing and geochemical simulation as inputs for the petrophysical modeling applied to a published data set of microscale induced polarization monitoring of calcite dissolution under partially saturated conditions. The successful interpretation provides the cation exchange capacity and specific surface area evolution; essential parameters in field-scale surveys.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"10 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl111271","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate how micro-geoelectrical monitoring is promising for studying microscale coupled processes since it facilitates the upscaling of pore-scale observations and enhances the petrophysical interpretation of the geoelectrical measurements. Microscale geophysics using microfluidics emerges and combines direct visualization of pore scale dynamics and chemical reactivity with geoelectrical monitoring. Calcite dissolution is a usual geochemical reaction considered as an analog of water–mineral interactions involved in the critical zone. We develop a numerical workflow combining image processing and geochemical simulation as inputs for the petrophysical modeling applied to a published data set of microscale induced polarization monitoring of calcite dissolution under partially saturated conditions. The successful interpretation provides the cation exchange capacity and specific surface area evolution; essential parameters in field-scale surveys.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.