Impact of Aspect Ratio on Charge Carrier Dynamics and Efficiency Enhancement in CdSe/CdS Dot-in-Rod Nanostructures for Photocatalytic Hydrogen Evolution
{"title":"Impact of Aspect Ratio on Charge Carrier Dynamics and Efficiency Enhancement in CdSe/CdS Dot-in-Rod Nanostructures for Photocatalytic Hydrogen Evolution","authors":"Yu-Chen Wei, Jui-Cheng Chang, Yu-Hung Chen, Shih-Wen Tseng, Yung-Jung Hsu, Ying-Chih Pu","doi":"10.1021/acs.jpclett.4c03088","DOIUrl":null,"url":null,"abstract":"We demonstrated that the aspect ratio (AR)-tunable CdSe/CdS dot-in-rod (DiR) nanostructures with quasi-type-II band structure were successively synthesized using the hot injection method. When the AR of CdSe/CdS DiR was tuned from 10 to 37, the exciton localization efficiency along the longitudinal CdS rod shell decreased from 57.9 to 15.1%, resulting in a 5-fold improvement in the efficiency of photocatalytic hydrogen (H<sub>2</sub>) evolution. The optimal CdSe/CdS DiR exhibited the highest H<sub>2</sub> evolution rate of 2.11 mmol·g<sup>–1</sup>·h<sup>–1</sup> at an AR of 29 without any cocatalyst assistance. In situ transient absorption spectroscopy was employed to investigate the interfacial charge carrier dynamics of CdSe/CdS DiR during practical photocatalytic H<sub>2</sub> evolution. The findings indicated that the half-life of delocalized electrons on the conduction band along the longitudinal CdS rod shell increases from 11.5 to 20.1 μs as the AR increased, demonstrating that the AR-dependent charge carrier dynamics significantly influences the photoactivity of CdSe/CdS DiR. This study provides valuable and novel insights into the tunability of charge carrier dynamics through AR manipulation in one-dimensional semiconductor nano-heterostructures for solar fuel generation.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"29 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03088","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrated that the aspect ratio (AR)-tunable CdSe/CdS dot-in-rod (DiR) nanostructures with quasi-type-II band structure were successively synthesized using the hot injection method. When the AR of CdSe/CdS DiR was tuned from 10 to 37, the exciton localization efficiency along the longitudinal CdS rod shell decreased from 57.9 to 15.1%, resulting in a 5-fold improvement in the efficiency of photocatalytic hydrogen (H2) evolution. The optimal CdSe/CdS DiR exhibited the highest H2 evolution rate of 2.11 mmol·g–1·h–1 at an AR of 29 without any cocatalyst assistance. In situ transient absorption spectroscopy was employed to investigate the interfacial charge carrier dynamics of CdSe/CdS DiR during practical photocatalytic H2 evolution. The findings indicated that the half-life of delocalized electrons on the conduction band along the longitudinal CdS rod shell increases from 11.5 to 20.1 μs as the AR increased, demonstrating that the AR-dependent charge carrier dynamics significantly influences the photoactivity of CdSe/CdS DiR. This study provides valuable and novel insights into the tunability of charge carrier dynamics through AR manipulation in one-dimensional semiconductor nano-heterostructures for solar fuel generation.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.