Sawsan Almohammed, Agata Fularz, Ahmed Alanazi, Mohammed Benali Kanoun, Souraya Goumri Said, Kai Tao, Brian J. Rodriguez, James H. Rice
{"title":"Metal-Free Peptide Semiconductor-Enhanced Raman Scattering","authors":"Sawsan Almohammed, Agata Fularz, Ahmed Alanazi, Mohammed Benali Kanoun, Souraya Goumri Said, Kai Tao, Brian J. Rodriguez, James H. Rice","doi":"10.1021/acs.nanolett.4c04049","DOIUrl":null,"url":null,"abstract":"There is a growing demand for sustainable and safe materials in developing technological systems and devices, including those that enhance Raman scattering. Organic (bio) materials based on simple peptides are one class of such materials. This study investigates self-assembled semiconducting peptides as metal-free substrates for surface-enhanced Raman scattering. Our results reveal significant variations in Raman enhancement factors, spanning up to 2 orders of magnitude. We examined specific Raman enhancement selection rules related to the energy levels and structural configurations of the probe molecules. The effectiveness of these rules underscores the importance of strong molecule-peptide coupling and efficient charge transfer for achieving optimal Raman enhancement factors. These insights offer a foundational understanding of peptide–molecule interactions and the underlying chemical mechanisms driving Raman enhancement, highlighting the potential of organic semiconductor-based materials as highly effective platforms for enhancing Raman scattering in chemical sensing applications.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"2 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04049","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a growing demand for sustainable and safe materials in developing technological systems and devices, including those that enhance Raman scattering. Organic (bio) materials based on simple peptides are one class of such materials. This study investigates self-assembled semiconducting peptides as metal-free substrates for surface-enhanced Raman scattering. Our results reveal significant variations in Raman enhancement factors, spanning up to 2 orders of magnitude. We examined specific Raman enhancement selection rules related to the energy levels and structural configurations of the probe molecules. The effectiveness of these rules underscores the importance of strong molecule-peptide coupling and efficient charge transfer for achieving optimal Raman enhancement factors. These insights offer a foundational understanding of peptide–molecule interactions and the underlying chemical mechanisms driving Raman enhancement, highlighting the potential of organic semiconductor-based materials as highly effective platforms for enhancing Raman scattering in chemical sensing applications.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.