Habasi Patrick Manzi , Dan Qin , Kai Yang , Hongzhe Li , Claude Kiki , Jean Claude Nizeyimana , Li Cui , Qian Sun
{"title":"Unveiling bisphenol A-degrading bacteria in activated sludge through plating and 13C isotope labeled single-cell Raman spectroscopy","authors":"Habasi Patrick Manzi , Dan Qin , Kai Yang , Hongzhe Li , Claude Kiki , Jean Claude Nizeyimana , Li Cui , Qian Sun","doi":"10.1016/j.jhazmat.2024.136862","DOIUrl":null,"url":null,"abstract":"<div><div>Bacteria play a crucial role in biodegradation of recalcitrant endocrine-disrupting compounds (EDCs), such as bisphenol A (BPA). However, in-situ identification of BPA-degrading bacteria remains technically challenging. Herein, we employed a conventional plating isolation (PI) and a new single cell Raman spectroscopy coupled with stable isotope probing (Raman-SIP) approach to enrich and identify BPA-degrading bacteria from activated sludge (AS). AS-inhabitant bacteria were exposed to either <sup>12</sup>C-BPA or <sup>13</sup>C-BPA as sole carbon source over three consecutive generations. While PI relies on colony proliferation on agar media, Raman-SIP enables identification of in situ BPA-degrading bacteria in a culture-independent way. The results showed that BPA dissipation correlated with increased bacterial growth. The uptake of <sup>13</sup>C-BPA by single cells was verified by Raman spectra, suggesting occurrence of both metabolic and biosynthesis processes. This direct tracking of the fate of <sup>13</sup>C-BPA within cells highlights the advantages of Raman-SIP over PI technique. PI isolated four BPA-degrading bacterial strains belonging to <em>Comamonas</em>, <em>Pseudomonas</em>, and <em>Herbaspirillum</em> genera. Meanwhile, Raman-SIP identified labeled cells belonging to <em>Comamonas</em> and <em>Pseudomonas</em> genera. Metagenomics of labeled cells revealed the presence of fifteen genes associated with benzene ring cleavage. This study provides a novel Raman-SIP approach for detecting and characterizing BPA-assimilating bacteria at a single cell level.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"485 ","pages":"Article 136862"},"PeriodicalIF":11.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389424034435","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria play a crucial role in biodegradation of recalcitrant endocrine-disrupting compounds (EDCs), such as bisphenol A (BPA). However, in-situ identification of BPA-degrading bacteria remains technically challenging. Herein, we employed a conventional plating isolation (PI) and a new single cell Raman spectroscopy coupled with stable isotope probing (Raman-SIP) approach to enrich and identify BPA-degrading bacteria from activated sludge (AS). AS-inhabitant bacteria were exposed to either 12C-BPA or 13C-BPA as sole carbon source over three consecutive generations. While PI relies on colony proliferation on agar media, Raman-SIP enables identification of in situ BPA-degrading bacteria in a culture-independent way. The results showed that BPA dissipation correlated with increased bacterial growth. The uptake of 13C-BPA by single cells was verified by Raman spectra, suggesting occurrence of both metabolic and biosynthesis processes. This direct tracking of the fate of 13C-BPA within cells highlights the advantages of Raman-SIP over PI technique. PI isolated four BPA-degrading bacterial strains belonging to Comamonas, Pseudomonas, and Herbaspirillum genera. Meanwhile, Raman-SIP identified labeled cells belonging to Comamonas and Pseudomonas genera. Metagenomics of labeled cells revealed the presence of fifteen genes associated with benzene ring cleavage. This study provides a novel Raman-SIP approach for detecting and characterizing BPA-assimilating bacteria at a single cell level.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.