{"title":"Towards A Universal Settling Model for Microplastics with Diverse Shapes: Machine Learning Breaking Morphological Barriers","authors":"Jiaqi Zhang, Clarence Edward Choi","doi":"10.1016/j.watres.2024.122961","DOIUrl":null,"url":null,"abstract":"Accurately predicting the settling velocity of microplastics in aquatic environments is a prerequisite for reliably modeling their transport processes. An increasing number of settling models have been proposed for microplastics with fragmented, filmed, and fibrous morphologies, respectively. However, none of the existing models demonstrates universal applicability across all three morphologies. Scientists now have to rely on the predominate microplastic morphology extracted from filed samples to determine the appropriate settling model used for transport modeling. Given the spatiotemporal variability in morphologies and the coexistence of diverse morphologies of microplastics in natural aquatic environments, the extracted morphological information poses significant challenges in reliably determining the appropriate model. Evidently, to reliably model the transport of microplastics in aquatic environments, a universal settling model for microplastics with diverse shapes is warranted. To develop such a universal model, a unique shape factor, which can explicitly distinguish between the distinct morphologies of microplastics, was first proposed in this study by using a specifically-modified machine learning method. Using this newly-proposed shape factor, a universal model for predicting the settling velocity of microplastics with distinct morphologies was developed by using a physics-informed machine learning algorithm and then systematically evaluated against independent data sets. The newly-developed model enables reasonable predictions of the settling velocity of microplastic fragments, films, and fibers. In contrast to purely data-driven models, the newly-developed model is characterized by its transparent formulaic structure and physical interpretability, which is conducive to further expansion and improvement. This study can serve as a paradigm for future studies, inspiring the adoption of machine learning techniques in the development of physically-based models to investigate the transport of microplastics in aquatic environments.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"12 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122961","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately predicting the settling velocity of microplastics in aquatic environments is a prerequisite for reliably modeling their transport processes. An increasing number of settling models have been proposed for microplastics with fragmented, filmed, and fibrous morphologies, respectively. However, none of the existing models demonstrates universal applicability across all three morphologies. Scientists now have to rely on the predominate microplastic morphology extracted from filed samples to determine the appropriate settling model used for transport modeling. Given the spatiotemporal variability in morphologies and the coexistence of diverse morphologies of microplastics in natural aquatic environments, the extracted morphological information poses significant challenges in reliably determining the appropriate model. Evidently, to reliably model the transport of microplastics in aquatic environments, a universal settling model for microplastics with diverse shapes is warranted. To develop such a universal model, a unique shape factor, which can explicitly distinguish between the distinct morphologies of microplastics, was first proposed in this study by using a specifically-modified machine learning method. Using this newly-proposed shape factor, a universal model for predicting the settling velocity of microplastics with distinct morphologies was developed by using a physics-informed machine learning algorithm and then systematically evaluated against independent data sets. The newly-developed model enables reasonable predictions of the settling velocity of microplastic fragments, films, and fibers. In contrast to purely data-driven models, the newly-developed model is characterized by its transparent formulaic structure and physical interpretability, which is conducive to further expansion and improvement. This study can serve as a paradigm for future studies, inspiring the adoption of machine learning techniques in the development of physically-based models to investigate the transport of microplastics in aquatic environments.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.