ChemNTP: Advanced Prediction of Neurotoxicity Targets for Environmental Chemicals Using a Siamese Neural Network

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Lingjing Zhang, Tingji Yao, Jiaqi Luo, Hang Yi, Xiaoxiao Han, Wenxiao Pan, Qiao Xue, Xian Liu, Jianjie Fu, Aiqian Zhang
{"title":"ChemNTP: Advanced Prediction of Neurotoxicity Targets for Environmental Chemicals Using a Siamese Neural Network","authors":"Lingjing Zhang, Tingji Yao, Jiaqi Luo, Hang Yi, Xiaoxiao Han, Wenxiao Pan, Qiao Xue, Xian Liu, Jianjie Fu, Aiqian Zhang","doi":"10.1021/acs.est.4c10081","DOIUrl":null,"url":null,"abstract":"Environmental chemicals can enter the human body through various exposure pathways, potentially leading to neurotoxic effects that pose significant health risks. Many such chemicals have been identified as neurotoxic, but the molecular mechanisms underlying their toxicity, including specific binding targets, remain unclear. To address this, we developed ChemNTP, a predictive model for identifying neurotoxicity targets of environmental chemicals. ChemNTP integrates a comprehensive representation of chemical structures and biological targets, improving upon traditional methods that are limited to single targets and mechanisms. By leveraging these structural representations, ChemNTP enables rapid screening across 199 potential neurotoxic targets or key molecular initiating events (MIEs). The model demonstrates robust predictive performance, achieving an area under the receiver operating characteristic curve (<i>AUC</i><sub>ROC</sub>) of 0.923 on the test set. Additionally, ChemNTP’s attention mechanism highlights critical residues in binding targets and key functional groups or atoms in molecules, offering insights into the structural basis of interactions. Experimental validation through <i>in vitro</i> enzyme activity assays and molecular docking confirmed the binding of eight polybrominated diphenyl ethers (PBDEs) to acetylcholinesterase (AChE). We also provide a user-friendly software interface to facilitate the rapid identification of neurotoxicity targets for emerging environmental pollutants, with potential applications in studying MIEs for more types of toxicity.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"12 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c10081","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental chemicals can enter the human body through various exposure pathways, potentially leading to neurotoxic effects that pose significant health risks. Many such chemicals have been identified as neurotoxic, but the molecular mechanisms underlying their toxicity, including specific binding targets, remain unclear. To address this, we developed ChemNTP, a predictive model for identifying neurotoxicity targets of environmental chemicals. ChemNTP integrates a comprehensive representation of chemical structures and biological targets, improving upon traditional methods that are limited to single targets and mechanisms. By leveraging these structural representations, ChemNTP enables rapid screening across 199 potential neurotoxic targets or key molecular initiating events (MIEs). The model demonstrates robust predictive performance, achieving an area under the receiver operating characteristic curve (AUCROC) of 0.923 on the test set. Additionally, ChemNTP’s attention mechanism highlights critical residues in binding targets and key functional groups or atoms in molecules, offering insights into the structural basis of interactions. Experimental validation through in vitro enzyme activity assays and molecular docking confirmed the binding of eight polybrominated diphenyl ethers (PBDEs) to acetylcholinesterase (AChE). We also provide a user-friendly software interface to facilitate the rapid identification of neurotoxicity targets for emerging environmental pollutants, with potential applications in studying MIEs for more types of toxicity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信