Co-metabolic Biotransformation of Bisphenol AF by a Bisphenol A-Growing Bacterial Enrichment Culture

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yiding Wu, Tianyue Yang, Yang Wu, Yi Liang, Xiangying Zeng, Zhiqiang Yu, Ping’an Peng
{"title":"Co-metabolic Biotransformation of Bisphenol AF by a Bisphenol A-Growing Bacterial Enrichment Culture","authors":"Yiding Wu, Tianyue Yang, Yang Wu, Yi Liang, Xiangying Zeng, Zhiqiang Yu, Ping’an Peng","doi":"10.1021/acs.est.4c10861","DOIUrl":null,"url":null,"abstract":"The fluorinated bisphenol A (2,2-bis[4-hydroxyphenyl]propane, BPA) substitute bisphenol AF (BPAF) could be more persistent and toxic than BPA, but little is known about its environmental fate. In this study, we established a co-metabolic BPAF-degrading bacterial enrichment culture with BPA as the growth substrate. BPAF degradation by the enrichment culture was dependent on BPA, and BPAF could be eliminated to below the detection limit with successive additions of BPA. BPAF was mainly degraded via phenolic ring hydroxylation and sequential ring cleavage, which are minor BPA transformation pathway. Conjugated BPAF products were also identified based on the characteristic CF<sub>3</sub><sup>–</sup> fragment and were found to accumulate during BPAF degradation. <i>Sphingopyxis</i> was the key BPA and BPAF degrader in the aerobic enrichment cultures, which was the most abundant genera in only BPA-added and BPA and BPAF-added cultures and was proven to be able to degrade BPA and BPAF by isolation. The aerobic co-metabolic BPAF degrading community also contain non-BPA and BPAF degraders, such as <i>Pandoraea</i>, which may play a supporting role in the community.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"28 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c10861","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The fluorinated bisphenol A (2,2-bis[4-hydroxyphenyl]propane, BPA) substitute bisphenol AF (BPAF) could be more persistent and toxic than BPA, but little is known about its environmental fate. In this study, we established a co-metabolic BPAF-degrading bacterial enrichment culture with BPA as the growth substrate. BPAF degradation by the enrichment culture was dependent on BPA, and BPAF could be eliminated to below the detection limit with successive additions of BPA. BPAF was mainly degraded via phenolic ring hydroxylation and sequential ring cleavage, which are minor BPA transformation pathway. Conjugated BPAF products were also identified based on the characteristic CF3 fragment and were found to accumulate during BPAF degradation. Sphingopyxis was the key BPA and BPAF degrader in the aerobic enrichment cultures, which was the most abundant genera in only BPA-added and BPA and BPAF-added cultures and was proven to be able to degrade BPA and BPAF by isolation. The aerobic co-metabolic BPAF degrading community also contain non-BPA and BPAF degraders, such as Pandoraea, which may play a supporting role in the community.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信