The impacts of heat-power cogeneration on air pollution: An empirical study based on the measures for the administration of heat-power cogeneration policy in China

IF 9.7 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Wenhao Xue, LiYun Wang, Xinyao Li, Qingqing Xu, Zhe Yang
{"title":"The impacts of heat-power cogeneration on air pollution: An empirical study based on the measures for the administration of heat-power cogeneration policy in China","authors":"Wenhao Xue, LiYun Wang, Xinyao Li, Qingqing Xu, Zhe Yang","doi":"10.1016/j.jclepro.2024.144472","DOIUrl":null,"url":null,"abstract":"Air pollution is a global environmental challenge that places a heavy burden on human health and socioeconomics. In China, a large amount of pollutant emissions is attributed to the use of coal for heating and power generation, which makes efficient energy utilization a critical task for air pollution prevention and control. This study systematically investigates the impacts of the Measures for the Administration of Heat-Power Cogeneration (HPC) policy on air pollution and its mechanism by applying the difference in differences (DID) model based on a panel data sample covering 296 cities in China from 2013 to 2020. The SO<sub>2</sub> and NO<sub>2</sub> concentrations based on satellite remote sensing data are both incorporated into our unified analytical framework. The empirical results reveal that compared with the nonpilot cities, the HPC policy can significantly alleviate SO<sub>2</sub> and NO<sub>2</sub> pollution by approximately 17.4% and 3.7%, respectively, which can also be confirmed by multiple robustness tests. Then, we also found that there are three main mechanism paths to the implementation of pollution mitigation by the HPC policy, including green technology innovation, energy structure optimization, and energy efficiency improvement. Furthermore, significant heterogeneity of the effectiveness of the HPC policy on SO<sub>2</sub> and NO<sub>2</sub> pollution control was captured, and the synergistic effect of is more obvious in cities with large populations, \"2+26\" key cities, urban agglomerations, and low-carbon pilot cities. Moreover, we found that the roles of the HPC policy in NO<sub>2</sub> abatement in low-carbon pilot cities and nonpilot cities did not reveal a significant difference. The findings of this paper can serve as a useful policy references and inspiration for the systematic planning of HPC projects and provide a reference for other areas with severe air pollution.","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"20 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jclepro.2024.144472","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Air pollution is a global environmental challenge that places a heavy burden on human health and socioeconomics. In China, a large amount of pollutant emissions is attributed to the use of coal for heating and power generation, which makes efficient energy utilization a critical task for air pollution prevention and control. This study systematically investigates the impacts of the Measures for the Administration of Heat-Power Cogeneration (HPC) policy on air pollution and its mechanism by applying the difference in differences (DID) model based on a panel data sample covering 296 cities in China from 2013 to 2020. The SO2 and NO2 concentrations based on satellite remote sensing data are both incorporated into our unified analytical framework. The empirical results reveal that compared with the nonpilot cities, the HPC policy can significantly alleviate SO2 and NO2 pollution by approximately 17.4% and 3.7%, respectively, which can also be confirmed by multiple robustness tests. Then, we also found that there are three main mechanism paths to the implementation of pollution mitigation by the HPC policy, including green technology innovation, energy structure optimization, and energy efficiency improvement. Furthermore, significant heterogeneity of the effectiveness of the HPC policy on SO2 and NO2 pollution control was captured, and the synergistic effect of is more obvious in cities with large populations, "2+26" key cities, urban agglomerations, and low-carbon pilot cities. Moreover, we found that the roles of the HPC policy in NO2 abatement in low-carbon pilot cities and nonpilot cities did not reveal a significant difference. The findings of this paper can serve as a useful policy references and inspiration for the systematic planning of HPC projects and provide a reference for other areas with severe air pollution.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信