Yijia Tang, Budiman Minasny, Alex McBratney, Peipei Xue, Ho Jun Jang
{"title":"Impact of land use and soil group on the functional diversity of abundant and rare bacterial communities","authors":"Yijia Tang, Budiman Minasny, Alex McBratney, Peipei Xue, Ho Jun Jang","doi":"10.1111/ejss.70026","DOIUrl":null,"url":null,"abstract":"<p>Despite the critical role of soil microbial communities in biomass production and ecosystem functioning, previous research primarily focussed on microbial structure without functional insights, especially for rare species. This study addresses this gap by exploring the functional potential of both abundant and rare bacterial communities across various land uses and soil groups in the Lower Namoi Valley, Australia. By integrating plant-beneficial bacteria (PBB) and Functional Annotation of Prokaryotic Taxa (FAPROTAX) databases, we show that rare species exhibited higher alpha diversity and multifunctionality than abundant species. Cropping enhanced the biodiversity of abundant functional bacteria in fine-textured soils, which promoted crop growth through increased PBB and carbon cycling. Conversely, rare functional bacteria exhibited consistently lower biodiversity in croplands. Random forest models and linear regression analyses identified land use as a significant factor influencing the biodiversity of rare functional bacterial communities, likely through plant–soil feedback systems. These findings underline the importance of land use in shaping bacterial community functionality and call for conservation strategies to protect soil biodiversity, especially rare species, to ensure sustainable soil ecosystems and support future food production.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70026","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the critical role of soil microbial communities in biomass production and ecosystem functioning, previous research primarily focussed on microbial structure without functional insights, especially for rare species. This study addresses this gap by exploring the functional potential of both abundant and rare bacterial communities across various land uses and soil groups in the Lower Namoi Valley, Australia. By integrating plant-beneficial bacteria (PBB) and Functional Annotation of Prokaryotic Taxa (FAPROTAX) databases, we show that rare species exhibited higher alpha diversity and multifunctionality than abundant species. Cropping enhanced the biodiversity of abundant functional bacteria in fine-textured soils, which promoted crop growth through increased PBB and carbon cycling. Conversely, rare functional bacteria exhibited consistently lower biodiversity in croplands. Random forest models and linear regression analyses identified land use as a significant factor influencing the biodiversity of rare functional bacterial communities, likely through plant–soil feedback systems. These findings underline the importance of land use in shaping bacterial community functionality and call for conservation strategies to protect soil biodiversity, especially rare species, to ensure sustainable soil ecosystems and support future food production.
期刊介绍:
The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.