Potential for Life to Exist and be Detected on Earth-like Planets Orbiting White Dwarfs

Caldon T. Whyte, L. H. Quiroga-Nuñez, Manasvi Lingam and Paola Pinilla
{"title":"Potential for Life to Exist and be Detected on Earth-like Planets Orbiting White Dwarfs","authors":"Caldon T. Whyte, L. H. Quiroga-Nuñez, Manasvi Lingam and Paola Pinilla","doi":"10.3847/2041-8213/ad9821","DOIUrl":null,"url":null,"abstract":"With recent observations confirming exoplanets orbiting white dwarfs, there is growing interest in exploring and quantifying the habitability of temperate rocky planets around white dwarfs. In this work, the limits of the habitable zone of an Earth-like planet around a white dwarf are computed based on the incident stellar flux, and these limits are utilized to assess the duration of habitability at a given orbital distance. For a typical 0.6M⊙ white dwarf an Earth-like planet at ∼0.012 au could remain in the temporally evolving habitable zone, maintaining conditions to support life, for nearly 7 Gyr. Also, additional constraints on habitability are studied for the first time by imposing the requirement of receiving sufficient photon fluxes for UV-mediated prebiotic chemistry and photosynthesis. We demonstrate that these thresholds are comfortably exceeded by planets in the habitable zone. The prospects for detecting atmospheric biosignatures are also evaluated and shown to require integration times on the order of 1 hr or less for ongoing space observations with JWST.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad9821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With recent observations confirming exoplanets orbiting white dwarfs, there is growing interest in exploring and quantifying the habitability of temperate rocky planets around white dwarfs. In this work, the limits of the habitable zone of an Earth-like planet around a white dwarf are computed based on the incident stellar flux, and these limits are utilized to assess the duration of habitability at a given orbital distance. For a typical 0.6M⊙ white dwarf an Earth-like planet at ∼0.012 au could remain in the temporally evolving habitable zone, maintaining conditions to support life, for nearly 7 Gyr. Also, additional constraints on habitability are studied for the first time by imposing the requirement of receiving sufficient photon fluxes for UV-mediated prebiotic chemistry and photosynthesis. We demonstrate that these thresholds are comfortably exceeded by planets in the habitable zone. The prospects for detecting atmospheric biosignatures are also evaluated and shown to require integration times on the order of 1 hr or less for ongoing space observations with JWST.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信