Jessica Dipold, Niklaus Ursus Wetter, F. C. Marques, Aristide Dogariu, Ernesto Jimenez-Villar
{"title":"Strong enhancement of effective refractive index in structured colloids (TiO2@Silica)","authors":"Jessica Dipold, Niklaus Ursus Wetter, F. C. Marques, Aristide Dogariu, Ernesto Jimenez-Villar","doi":"10.1039/d4nr03626c","DOIUrl":null,"url":null,"abstract":"We use non-resonant Raman scattering to demonstrate a large enhancement of the effective refractive index experienced by Raman photons in a scattering medium comprising spatially-correlated photonic structures of core-shell TiO2@Silica scatterers mixed with silica nanoparticles and suspended in ethanol. We show that the high refractive index extends outside the physical boundary of the medium, which is attributed to the evanescent contributions of electromagnetic modes that are strongly localized within the medium. Notably, the effective enhancement can be observed even at very low intensities of Raman emission. This anomalous non-linear phenomenon could be explained by the successive polarization of valence electrons to virtual states induced by the strong photon correlations in the strongly localized electromagnetic modes. The enhancement of refractive index and its extension in the vicinity of medium’s interface provide new opportunities for controlling the electromagnetic fields in advanced photonic devices.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"67 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03626c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We use non-resonant Raman scattering to demonstrate a large enhancement of the effective refractive index experienced by Raman photons in a scattering medium comprising spatially-correlated photonic structures of core-shell TiO2@Silica scatterers mixed with silica nanoparticles and suspended in ethanol. We show that the high refractive index extends outside the physical boundary of the medium, which is attributed to the evanescent contributions of electromagnetic modes that are strongly localized within the medium. Notably, the effective enhancement can be observed even at very low intensities of Raman emission. This anomalous non-linear phenomenon could be explained by the successive polarization of valence electrons to virtual states induced by the strong photon correlations in the strongly localized electromagnetic modes. The enhancement of refractive index and its extension in the vicinity of medium’s interface provide new opportunities for controlling the electromagnetic fields in advanced photonic devices.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.