{"title":"Utilizing Quantum Cascade Lasers for Ultranarrow Velocity Resolution and Quantum-State Selectivity in Molecular Beam Scattering and Spectroscopy","authors":"O. A. Krohn, David W. Chandler","doi":"10.1021/acs.jpclett.4c02927","DOIUrl":null,"url":null,"abstract":"We demonstrate the capability of a narrow linewidth quantum cascade laser (QCL) to selectively excite a very narrow velocity range of nitric oxide (σ ≤ 7(3) m/s) with a pure ro-vibrational quantum state. By implementing a counter-propagating geometry, the molecules are selectively excited according to the Doppler shift of the ro-vibrational transition frequency such that the velocity width associated with the excited molecules depends only on the QCL linewidth. We demonstrate a velocity distribution limited by the effective linewidth of our free-running QCL (Γ = 3.2 MHz). Our development provides a cost-effective, flexible approach to resolve quantum-state selective chemical dynamics with excellent velocity resolution in a wide variety of molecules with infrared-active transitions. This technique has been formulated to provide ultrahigh collisional energy resolution in molecular beams to delineate final quantum-state product pairs in studies of molecular collisions.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"9 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02927","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate the capability of a narrow linewidth quantum cascade laser (QCL) to selectively excite a very narrow velocity range of nitric oxide (σ ≤ 7(3) m/s) with a pure ro-vibrational quantum state. By implementing a counter-propagating geometry, the molecules are selectively excited according to the Doppler shift of the ro-vibrational transition frequency such that the velocity width associated with the excited molecules depends only on the QCL linewidth. We demonstrate a velocity distribution limited by the effective linewidth of our free-running QCL (Γ = 3.2 MHz). Our development provides a cost-effective, flexible approach to resolve quantum-state selective chemical dynamics with excellent velocity resolution in a wide variety of molecules with infrared-active transitions. This technique has been formulated to provide ultrahigh collisional energy resolution in molecular beams to delineate final quantum-state product pairs in studies of molecular collisions.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.