Rui Li, Zhenglin Li, Kui Zhang, Cong Zhang, Yue Sun, Jie Zhang, Yi Zheng, Yuncong Yao, Xiaoxiao Qin
{"title":"The responses of root exudates and microbiome in the rhizosphere of main plant and aromatic intercrops to soil Cr stress","authors":"Rui Li, Zhenglin Li, Kui Zhang, Cong Zhang, Yue Sun, Jie Zhang, Yi Zheng, Yuncong Yao, Xiaoxiao Qin","doi":"10.1016/j.envpol.2024.125528","DOIUrl":null,"url":null,"abstract":"Soil chromium (Cr) stress has a well-recognized negative impact on plant growth, and intercropping is a commonly used method to mitigate heavy metal toxicity to main plants. However, the responses of root exudates-microbial and their interactions among soil zones to soil Cr stress are always in need of clarification in intercropping system. In this study, three intercropping patterns (CT, <em>Malus</em> only; TM, <em>Malus</em>×<em>Mentha</em> and TA, <em>Malus</em>×<em>Ageratum</em>) with different soil Cr addition levels (NCR, LCR, HCR) were applied, and the rhizosphere ecological traits in the main plant (FRS) and intercrop (ARS) were investigated. The results indicate that intercropping with either <em>Mentha</em> or <em>Ageratum</em> has a positive effect on main plants response to soil Cr stress, and intercropping with <em>Ageratum</em> showing a more significant effect. Importantly, we found that the rhizosphere of main plant tends to alleviate stress by accumulating organic acids and amino acids, while aromatic plants exhibit a broader accumulation of metabolites. Additionally, we identified five core differential microbial genera. Our findings provide novel insights into intercrop Cr detoxification in the main plant.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"21 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.125528","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil chromium (Cr) stress has a well-recognized negative impact on plant growth, and intercropping is a commonly used method to mitigate heavy metal toxicity to main plants. However, the responses of root exudates-microbial and their interactions among soil zones to soil Cr stress are always in need of clarification in intercropping system. In this study, three intercropping patterns (CT, Malus only; TM, Malus×Mentha and TA, Malus×Ageratum) with different soil Cr addition levels (NCR, LCR, HCR) were applied, and the rhizosphere ecological traits in the main plant (FRS) and intercrop (ARS) were investigated. The results indicate that intercropping with either Mentha or Ageratum has a positive effect on main plants response to soil Cr stress, and intercropping with Ageratum showing a more significant effect. Importantly, we found that the rhizosphere of main plant tends to alleviate stress by accumulating organic acids and amino acids, while aromatic plants exhibit a broader accumulation of metabolites. Additionally, we identified five core differential microbial genera. Our findings provide novel insights into intercrop Cr detoxification in the main plant.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.