DNA Reaction Network Central Controller for Dynamic Spatiotemporal Logical Assembly and Its Application for Rational Design of Fluorometric/Electrical Biosensing
{"title":"DNA Reaction Network Central Controller for Dynamic Spatiotemporal Logical Assembly and Its Application for Rational Design of Fluorometric/Electrical Biosensing","authors":"Xin Ma, Jian Wang, Sai Zhang, Xiaohai Yan, Kewei Feng, Yane Luo, Junfeng Yao, Tianliang Liu, Yahong Yuan, Tianli Yue, Qinglin Sheng","doi":"10.1021/acssensors.4c02493","DOIUrl":null,"url":null,"abstract":"This work introduces a fluorometric/electrical dual-biosensing logic system based on a DNA reaction network (DRN). This system was used to spatiotemporally modulate the kinetic behavior of DNA nanostructures. The system, acting as a programmable and modulative central controller introduced to implement, enabled the monitoring of the target gliotoxin. The DRN encompasses multiple pathways and provides a potential mechanistic way to develop dynamic networks that can evolve under directional controllable conditions. We demonstrated the implementation of a DRN to control the assembly and disassembly of a DNA conveyor belt. By exposing the responsive switches of the DNA conveyor belt, the DRN activates the operation of fluorescent DNA-driving axes based on the aggregation-induced emission effect, enabling signal generation and collection through continuous rolling on the surface of the DNA conveyor belt. The biosensor was employed to monitor gliotoxin, and under optimal conditions, dual-signal detection was achieved at 1.14 × 10<sup>–7</sup> and 2.45 × 10<sup>–7</sup> μg·mL<sup>–1</sup>. The biosensor was integrated with a handheld electrochemical workstation, which enabled the successful monitoring of gliotoxin. This strategy enables self-tuning control and the multilayer hierarchical assembly of kinetic behaviors and is applicable to diverse fields such as biometric systems, medical diagnosis, and logic computing.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"12 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02493","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a fluorometric/electrical dual-biosensing logic system based on a DNA reaction network (DRN). This system was used to spatiotemporally modulate the kinetic behavior of DNA nanostructures. The system, acting as a programmable and modulative central controller introduced to implement, enabled the monitoring of the target gliotoxin. The DRN encompasses multiple pathways and provides a potential mechanistic way to develop dynamic networks that can evolve under directional controllable conditions. We demonstrated the implementation of a DRN to control the assembly and disassembly of a DNA conveyor belt. By exposing the responsive switches of the DNA conveyor belt, the DRN activates the operation of fluorescent DNA-driving axes based on the aggregation-induced emission effect, enabling signal generation and collection through continuous rolling on the surface of the DNA conveyor belt. The biosensor was employed to monitor gliotoxin, and under optimal conditions, dual-signal detection was achieved at 1.14 × 10–7 and 2.45 × 10–7 μg·mL–1. The biosensor was integrated with a handheld electrochemical workstation, which enabled the successful monitoring of gliotoxin. This strategy enables self-tuning control and the multilayer hierarchical assembly of kinetic behaviors and is applicable to diverse fields such as biometric systems, medical diagnosis, and logic computing.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.