Manipulating Trimetal Catalytic Activities for Efficient Urea Electrooxidation-Coupled Hydrogen Production at Ampere-Level Current Densities

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-11 DOI:10.1021/acsnano.4c14406
Huachuan Sun, Zhonge Luo, Mingpeng Chen, Tong Zhou, Boxue Wang, Bin Xiao, Qingjie Lu, Baoye Zi, Kai Zhao, Xia Zhang, Jianhong Zhao, Tianwei He, Jin Zhang, Hao Cui, Feng Liu, Chundong Wang, Dingsheng Wang, Qingju Liu
{"title":"Manipulating Trimetal Catalytic Activities for Efficient Urea Electrooxidation-Coupled Hydrogen Production at Ampere-Level Current Densities","authors":"Huachuan Sun, Zhonge Luo, Mingpeng Chen, Tong Zhou, Boxue Wang, Bin Xiao, Qingjie Lu, Baoye Zi, Kai Zhao, Xia Zhang, Jianhong Zhao, Tianwei He, Jin Zhang, Hao Cui, Feng Liu, Chundong Wang, Dingsheng Wang, Qingju Liu","doi":"10.1021/acsnano.4c14406","DOIUrl":null,"url":null,"abstract":"Replacing the oxygen evolution reaction (OER) with the urea oxidation reaction (UOR) in conjunction with the hydrogen evolution reaction (HER) offers a feasible and environmentally friendly approach for handling urea-rich wastewater and generating energy-saving hydrogen. However, the deactivation and detachment of active sites in powder electrocatalysts reported hitherto present significant challenges to achieving high efficiency and sustainability in energy-saving hydrogen production. Herein, a self-supported bimetallic nickel manganese metal–organic framework (NiMn-MOF) nanosheet and its derived heterostructure composed of NiMn-MOF decorated with ultrafine Pt nanocrystals (Pt<sub>NC</sub>/NiMn-MOF) are rationally designed. By leveraging the synergistic effect of Mn and Ni, along with the strong electronic interaction between NiMn-MOF and Pt<sub>NC</sub> at the interface, the optimized catalysts (NiMn-MOF and Pt<sub>NC</sub>/NiMn-MOF) exhibit substantially reduced potentials of 1.459 and −0.129 V to reach 1000 mA cm<sup>–2</sup> during the UOR and HER. Theoretical calculations confirm that Mn-doping and the heterointerface between NiMn-MOF and Pt nanocrystals regulate the d-band center of the catalyst, which in turn enhances electron transfer and facilitates charge redistribution. This manipulation optimizes the adsorption/desorption energies of the reactants and intermediates in both the HER and UOR, thereby significantly reducing the energy barrier of the rate-determining step (RDS) and enhancing the electrocatalytic performance. Furthermore, the urea degradation rates of Pt<sub>NC</sub>/NiMn-MOF (96.1%) and NiMn-MOF (90.3%) are significantly higher than those of Ni-MOF and the most reported advanced catalysts. This work provides valuable insights for designing catalysts applicable to urea-rich wastewater treatment and energy-saving hydrogen production.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"156 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14406","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Replacing the oxygen evolution reaction (OER) with the urea oxidation reaction (UOR) in conjunction with the hydrogen evolution reaction (HER) offers a feasible and environmentally friendly approach for handling urea-rich wastewater and generating energy-saving hydrogen. However, the deactivation and detachment of active sites in powder electrocatalysts reported hitherto present significant challenges to achieving high efficiency and sustainability in energy-saving hydrogen production. Herein, a self-supported bimetallic nickel manganese metal–organic framework (NiMn-MOF) nanosheet and its derived heterostructure composed of NiMn-MOF decorated with ultrafine Pt nanocrystals (PtNC/NiMn-MOF) are rationally designed. By leveraging the synergistic effect of Mn and Ni, along with the strong electronic interaction between NiMn-MOF and PtNC at the interface, the optimized catalysts (NiMn-MOF and PtNC/NiMn-MOF) exhibit substantially reduced potentials of 1.459 and −0.129 V to reach 1000 mA cm–2 during the UOR and HER. Theoretical calculations confirm that Mn-doping and the heterointerface between NiMn-MOF and Pt nanocrystals regulate the d-band center of the catalyst, which in turn enhances electron transfer and facilitates charge redistribution. This manipulation optimizes the adsorption/desorption energies of the reactants and intermediates in both the HER and UOR, thereby significantly reducing the energy barrier of the rate-determining step (RDS) and enhancing the electrocatalytic performance. Furthermore, the urea degradation rates of PtNC/NiMn-MOF (96.1%) and NiMn-MOF (90.3%) are significantly higher than those of Ni-MOF and the most reported advanced catalysts. This work provides valuable insights for designing catalysts applicable to urea-rich wastewater treatment and energy-saving hydrogen production.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信